• Title/Summary/Keyword: SOIL PROFILE

Search Result 489, Processing Time 0.021 seconds

Soil Profile Measurement of Carbon Contents using a Probe-type VIS-NIR Spectrophotometer (프로브형 가시광-근적외선 센서를 이용한 토양의 탄소량 측정)

  • Kweon, Gi-Young;Lund, Eric;Maxton, Chase;Drummond, Paul;Jensen, Kyle
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.382-389
    • /
    • 2009
  • An in-situ probe-based spectrophotometer has been developed. This system used two spectrometers to measure soil reflectance spectra from 450 nm to 2200 nm. It collects soil electrical conductivity (EC) and insertion force measurements in addition to the optical data. Six fields in Kansas were mapped with the VIS-NIR (visible-near infrared) probe module and sampled for calibration and validation. Results showed that VIS-NIR correlated well with carbon in all six fields, with RPD (the ratio of standard deviation to root mean square error of prediction) of 1.8 or better, RMSE of 0.14 to 0.22%, and $R^2$ of 0.69 to 0.89. From the investigation of carbon variability within the soil profile and by tillage practice, the 0-5 cm depth in a no-till field contained significantly higher levels of carbon than any other locations. Using the selected calibration model with the soil NIR probe data, a soil profile map of estimated carbon was produced, and it was found that estimated carbon values are highly correlated to the lab values. The array of sensors (VIS-NIR, electrical conductivity, insertion force) used in the probe allowed estimating bulk density, and three of the six fields were satisfactory. The VIS-NIR probe also showed the obtained spectra data were well correlated with nitrogen for all fields with RPD scores of 1.84 or better and coefficient of determination ($R^2$) of 0.7 or higher.

Relationship of soil profile strength and apparent soil electrical conductivity to crop yield (실시간 포장에서 측정한 토양 경도 및 전자장 유도 전기전도도와 작물수량과의 관계)

  • Jung, Won-Kyo;Kitchen, Newell R.;Sudduth, Kenneth A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.109-115
    • /
    • 2006
  • Understanding characteristics of claypan soils has long been an issue for researchers and farmers because the high-clay subsoil has a pronounced effect on grain crop productivity. The claypan restricts water infiltration and storage within the crop root zone, but these effects are not uniform within fields. Conventional techniques of identifying claypan soil characteristics require manual probing and analysis which can be quite expensive; an expense most farmers are unwilling to pay. On the other hand, farmers would be very interested if this information could be obtained with easy-to-use field sensors. Two examples of sensors that show promise for helping in claypan soil characterization are soil profile strength sensing and bulk soil apparent electrical conductivity (ECa). Little has been reported on claypan soils relating the combined information from these two sensors with grain crop yield. The objective of this research was to identify the relationships of sensed profile soil strength and soil EC with nine years of crop yield (maize and soybean) from a claypan soil field in central Missouri. A multiple-probe (five probes on 19-cm spacing) cone penetrometer was used to measure soil strength and an electromagnetic induction sensor was used to measure soil EC at 55 grid site locations within a 4-ha research field. Crop yields were obtained using a combine equipped with a yield monitoring system. Soil strength at the 15 to 45 cm soil depth were significantly correlated to crop yield and ECa. Estimated crop yields from apparent electrical conductivity and soil strength were validated with an independent data set. Using measurements from these two sensors, standard error rates for estimating yield ranged from 9 to 16%. In conclusion, these results showed that the sensed profile soil strength and soil EC could be used as a measure of the soil productivity for grain crop production.

CPT-based lateral displacement analysis using p-y method for offshore mono-piles in clays

  • Kim, Garam;Park, Donggyu;Kyung, Doohyun;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.459-475
    • /
    • 2014
  • In this study, a CPT-based p-y analysis method was proposed for the displacement analysis of laterally loaded piles. Key consideration was the continuous soil profiling capability of CPT and cone resistance profiles that do not require artificial assumption or simplification for input parameter selection. The focus is on the application into offshore mono-piles embedded in clays. The correlations of p-y function components to the effective cone resistance were proposed, which can fully utilize CPT measurements. A case example was selected from the literature and used to validate the proposed method. Various parametric studies were performed to examine the effectiveness of the proposed method and investigate the effect of property profile and its depth resolution on the p-y analysis. It was found that the calculation could be largely misleading if wrongly interpreted sub-layer condition or inappropriate resolution of input soil profile was involved in the analyses. It was also found that there is a significant influence depth that dominates overall load response of pile. The soil profile and properties within this depth range affect most significantly calculated load responses, confirming that the soil profile within this depth range should be identified in more detail.

Study on the Applicability of CPT Based Soil Classification Chart (콘관입시험결과를 이용한 흙분류차트의 적용성에 관한 연구)

  • Kim, Chan-Hong;Im, Jong-Chul;Kim, Young-Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.293-301
    • /
    • 2008
  • Soil profiling is one of the most important work among geotehnical engineering practice. Generally, soil profile is estimated from the observation of soil samples during subsurface exploration but such estimation also includes some experiencing aspects such as flushed water from the borehole, slime colour, boring speed and so on. In addition, since the capacity of hydraulic drill rig is significantly increased, thin layers might be easily missed. So, continuous soil profile is almost impossible over all depth to be bored from conventional subsurface exploration. While CPT or CPTu can serve continuous soil profile information over all depth generally in 5cm interval. Many charts or methods for soil profile from CPT result have been proposed during last several decades over the world. However they have not been verified in local ground condition in Korea. In this research, CPT results and soil classification results based on USCS were compiled from 17 sites over the Korea. Soil classification results by using 7 CPT soil classification charts were compared with those of USCS for the compiled database. Most proper CPT soil classification chart for Korean soil characteristics was evaluated and effective parameters for the soil classification from CPT were discussed. Finally interrelationship between CPT soil classification chart and USCS soil classification was evaluated.

A Study on the Applicatin of Design Response Spectrum to a Specific Soil Profile (특정지반에 적용할 설계응답스펙트럼에 대한 고찰)

  • 박형기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.91-99
    • /
    • 2001
  • This paper is for a reasonable selection of design response spectra for the seismic design of specific types of soil-structure interaction systems, e.g., underground structure within flexible soil profiles of structures on the shallow soil layers on the stiff bed rock. the existing backup data used for determining the design response spectra of the Code have been investigated and evaluated. For this purpose, various types of free field analyses have been performed using one-dimensional wave propagation theory considering the nonlinear properties of the soil profile. As a result, a reasonable approach of determining input response spectra for specific soil profiles has been proposed to be compatible to the design response spectra of the Code.

  • PDF

Soil Profile Characteristics of Coif Courses Located in Southern Region (남부지역 골프장의 토양단면 특성)

  • 최병주;주영희;심재성
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.1
    • /
    • pp.75-80
    • /
    • 1995
  • In eight golf courses of southern area fair way soil profile was investigated for soil physical, chemical properties, and root distribution. These were carried out only A horizon(lScm depth) in one golf course. Soil series was all different, Leaching to lower horizon was greator in order of Mg=$NO_3$> $NH_4$=Ca> K. Organic matter content was higher in B horizon than A in three golf courses. Soil phosphorus appeared to more down greatly in two golf courses. Soil pH was higher in lower horizon of all places. Such pH increase with depth seemed to he related with mineral leaching, Among the horizons of all golf courses BC showed significant correlation with K (EC =0.1025K +0.0157, r=0. 8012 p=0. 001 n=20). Both Fe and Mn were higher in A horizon.

  • PDF

Simulation of Dynamic in-situ Soil Properties for the Centrifuge Test (Hualien Site in Taiwan) (원심 모형 시험을 위한 동적 현장 지반 모사 기법 연구(대만 화련 지반))

  • Ha, Jeong-Gon;Lee, Sei-Hyun;Choo, Yun-Wook;Kim, Se-Hee;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The simulation of the field dynamic soil properties for soil modeling in the centrifuge test is important. In this study, the process of soil modeling based on the shear wave velocity profile is developed. From the resonant column test in each confining pressure, the shear wave velocity profile is expected and the modeling condition is determined by comparing it with that in the field. During the dynamic centrifuge test, the bender element test is performed for measuring the in-flight shear wave velocity profile, and the applicability of the proposed method was verified. This modeling method is applied to the centrifuge test of the Hualien Large-Scale Seismic test.

Evaluation of minimum depth of soil cover and reinforcement of soil cover above soil-steel bridge (지중강판 구조물의 최소토피고 평가 및 상부토피 보강 방안)

  • Jung, Hyun-Sik;Lee, Jong-Ku;Cho, Sung-Min;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.425-432
    • /
    • 2004
  • In this paper, the results of the numerical analysis for the minimum depth of soil cover have been compared with those of currently suggested codes. Based on this comparison, the minimum depth of soil cover for the structures with long spans was suggested. Results showed that the actual depth of the soil cover required against soil failure over a circular and low-profile arch structure does not vary significantly with the size of the span and for the circular structure, the minimum depth of the soil cover was about 1.5m, and for the low-profile arch structures, below about 1.6m. And the previously established code in which the minimum depth of soil cover is defined to linearly increase with the increase in the span (CHBDC, 2001) was very conservative. For the structure with the relieving slab, the maximum live load thrust was reduced by about 36 percent and the maximum moment about 81 percent. The numerical analysis gave more conservative estimation of the live-load thrusts than the other design methods.

  • PDF

Characterization of Cone Index and Tillage Draft Data to Define Design Parameters for an On-the-go Soil Strength Profile Sensor

  • Chung S. O.;Sudduth Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 2004
  • Precision agriculture aims to minimize costs and environmental damage caused by agriculture and to maximize crop yield and profitability, based on information collected at within-field locations. In this process, quantification of soil physical properties, including soil strength, would be useful. To quantify and manage variability in soil strength, there is need for a strength sensor that can take measurements continuously while traveling across the field. In this paper, preliminary analyses were conducted using two datasets available with current technology, (1) cone penetrometer readings collected at different compaction levels and for different soil textures and (2) tillage draft (TD) collected from an entire field. The objective was to provide information useful for design of an on-the-go soil strength profile sensor and for interpretation of sensor test results. Analysis of cone index (CI) profiles led to the selection of a 0.5-m design sensing depth, 10-MPa maximum expected soil strength, and 0.1-MPa sensing resolution. Compaction level, depth, texture, and water content of the soil all affected CI. The effects of these interacting factors on data obtained with the soil strength sensor should be investigated through experiments. Spatial analyses of CI and TD indicated that the on-the-go soil strength sensor should acquire high spatial-resolution, high-frequency ($\ge$ 4 Hz) measurements to capture within-field spatial variability.

  • PDF