• Title/Summary/Keyword: SO$_2$ adsorption

Search Result 348, Processing Time 0.025 seconds

Constant Correlation Factors between Temkin and Langmuir or Frumkin Adsorption Isotherms at Poly-Pt, Re, and Ni/Aqueous Electrolyte Interfaces

  • Chun Jang H.;Jeon Sang K.;Chun Jin Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.194-200
    • /
    • 2004
  • The constant correlation factors between the Temkin and the Langmuir or the Frumkin adsorption isotherms of over-potentially deposited hydrogen (OPD H) for the cathodic H2 evolution reaction (HER) at poly-Pt and Re/0.5M $H_2SO_4$ and poly-Ni/0.05 M KOH aqueous electrolyte interfaces have been experimentally and consistently found using the phase-shift method. At intermediate values of the fractional surface coverage $(\theta),\;i.e.,\;02<{\theta}<0.8$, the Langmuir and Temkin adsorption isotherms of OPD H for the cathodic HER are correlated to each other even though the adsorption conditions or processes are different from each other. At the same range of $\theta$, correspondingly, the Frumkin and Temkin adsorption isotherms of OPD H for the cathodic HER are correlated to each other. The equilibrium constants $(K_o)$ for the Temkin adsorption isotherms $({\theta}\;vs.\; E)$ are consistently ca. 10 times greater than those (K, Ko) for the corresponding Langmuir or Frumkin adsorption isotherms ($({\theta}\;vs.\; E)$. The interaction parameters (g) for the Temkin adsorption isotherms $({\theta}\;vs.\; E)$ are consistently ra. 4.6 greater than those (g) for the corresponding Langmuir or Frumkin adsorption isotherms $({\theta}\;vs.\; E)$. These numbers (10 times and 4.6) can be taken as constant correlation factors between the corresponding adsolftion isotherms (Temkin, Langmuir, Frumkin) at the interfaces. The Temkin adsorption isotherm corresponding to the Langmuir or the Frumkin adsorption isotherm, and vice versa, can be effectively verified or confirmed using the constant correlation factors. Both the phase-shift methodand constant correlation factors are useful and effective for determining or confirming the suitable adsorption isotherms (Temkin, Langmuir, Frumkin) of intermediates for sequential reactions in electrochemical systems.

Evaluation of Air Pollutant Adsorption Performance of Potassium and Calcium Ion-Exchanged Zeolite (칼륨 및 칼슘 이온으로 치환된 제올라이트의 대기오염물질 흡착 성능 평가)

  • Ye Hwan Lee;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.313-317
    • /
    • 2023
  • In this study, the physicochemical characterization and adsorption performance of air pollutants (VOCs, SO2, and CO2) were evaluated for the recycling of zeolite used in the ion exchange process. The surface characteristics of the zeolite used were confirmed through Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) analysis, and the composition and specific surface area were measured through X-Ray Fluorescence (XRF) and Brunauer-Emmett-Teller (BET). There was no change in the surface properties of the used zeolite, but the content of potassium and calcium increased and the specific surface area decreased. The toluene, sulfur oxides, and carbon dioxide adsorption performance of the used zeolite was evaluated, and it was confirmed that the performance was improved compared to the fresh zeolite. In particular, for toluene and sulfur oxides, the adsorption amount increased by 2.6 times and 2.3 times, respectively, which might be due to the enhancement of the polymerization reaction and the increase of the base point, according to the composition of the used zeolite.

The Adsorption Characteristics by the Optimun Activation Process of PAN-based Carbon Fiber and SO2 Adsorption Characteristics by the Impregnated Nanoparticles (PAN계 ACF의 최적 활성화 공정에 따른 흡착특성과 나노입자 첨착에 의한 SO2 흡착특성)

  • Lee, Jin-Jae;Kim, Young-Chai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.532-538
    • /
    • 2006
  • The carbonization and activation conditions for the PAN-based ACF of various grade were investigated to obtain the optimun activation condition with high surface area. And the surface properties and the absorption performance of toxic gas for terror were examined toward the PAN-ACF with the highest surface area. In the test results the surface area increased with increase of the activation temperature, but decreased with increase of the carbonization temperature. After carbonization condition ($900^{\circ}C$-15min) and activation condition ($900^{\circ}C$-30 min), we got the ACF with the highest surface area of $1204m^2/g$. In the absorption test of iodine and toxic gas for terror, this ACF showed more excellent absorption performance than the existing carbon-based adsorbent. Also, in order to give the function characteristic for a selective absorption, the stable nanoparticles of the Ag, Pt, Cu, Pd were prepared and impregnated on the PAN-based ACF in replacement of the existing method supporting metal catalysis. And were analyzed the surface characteristics and the $SO_{2}$ adsorption characteristics. In the $SO_{2}$ absorption performance test of the PAN-ACF with the impregnated nanoparticles, it wasn't change breakthrough time of Ag, Pt, Cu nanoparticle supported the PAN-ACF comparing with breakthrough time (326 sec) of the non supported PAN-ACF but Pd nanoparticle supported the PAN-ACF achieved excellent $SO_{2}$ absorption performance which has break-through time 925 sec.

Adsorption of Mn on iron minerals and calcium compounds to reduce Mn(II) toxicity (2가 망간의 독성 저감을 위해 철산화물과 칼슘화합물을 이용한 망간 흡착)

  • Hyo Kyung Jee;Jin Hee Park
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.457-462
    • /
    • 2022
  • Manganese (Mn) exists in various oxidation states and Mn(II) is the most mobile species of Mn, which is toxic to plants and limits their growth. Therefore, the purpose of this study was to reduce Mn toxicity by immobilizing Mn using various adsorbents including iron oxides and calcium compounds. Ferrihydrite, schwertmannite, goethite were synthesized, which was confirmed by X-ray diffraction. Hematite was purchased and used as Mn adsorbent. Calcium compounds such as CaNO3, CaSO4, and CaCO3 were used to increase pH and oxidize Mn. For Mn adsorption, Mn(II) solution was reacted with four iron oxides, CaNO3, CaSO4, and CaCO3 for 24 hours, filtered, and the remaining Mn concentrations in the solution were analyzed by inductively coupled plasma optical emission spectroscopy. The adsorption rate and adsorption isotherm were calculated. Among iron oxides, the adsorption rate was highest for hematite followed by ferrihyrite, but goethite and schwertmannite did not adsorb Mn. In the case of calcium compounds, the adsorption rate was high in the order of CaCO3>CaNO3>CaSO4. In conclusion, treatment of CaCO3 was the most effective in reducing Mn toxicity by increasing pH.

Exploiting the Anticorrosion Effects of Vernonia Amygdalina Extract for Protection of Mild Steel in Acidic Environments

  • Adindu, Blessing;Ogukwe, Cynthia;Eze, Francis;Oguzie, Emeka
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.251-262
    • /
    • 2016
  • The corrosion protection of mild steel in 1M HCl and 0.5M $H_2SO_4$ solutions by ethanol extract of Vernonia amygdalina (VA) was studied using a combination of experimental and computational methods. The obtained results revealed that VA reduced the corrosion of mild steel in both environments and inhibition efficiency increased with VA concentration but decreased with prolonged exposure. Electrochemical results showed that the extract functioned via mixed corrosion inhibiting mechanism by adsorption of some organic constituents of the extract on the metal/acid interface. Findings from infrared spectroscopy and electron microscopy all confirmed that VA retarded mild steel corrosion in both 1M HCl and 0.5M $H_2SO_4$ through an adsorption process. The adsorption behavior of selected constituents of the extract was modeled using density functional theory computations.

Separation Behavior of Vanadium and Tungsten from the Spent SCR DeNOX Catalyst by Strong Basic Anion Exchange Resin (SCR 탈질 폐촉매로부터 강염기성 음이온교환수지를 이용한 바나듐/텅스텐 분리거동 고찰)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Chul-Joo;Chung, Kueong-Woo;Jeon, Ho-Seok;Yoon, Do-Young;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.38-47
    • /
    • 2020
  • In this study, factors affecting the adsorption reaction for the separation/recovery of V and W using Lewatit monoplus MP 600, a strong basic anion exchange resin, from the leachate obtained through the soda roasting-water leaching process from the spent SCR DeNOX catalyst investigated and the adsorption mechanism was discussed based on the results. In the case of the mixed solution of V and W, both ions showed a high adsorption ratio at pH 2-6, but the adsorption of W was greatly reduced at pH 8. In the adsorption isothermal experiment, both V and W were fitted well at the Langmuir adsorption isotherm, and the reaction kinetics were fitted well at pseudo-second-order. As a result of conducting an adsorption experiment by adjusting the pH with H2SO4 to remove Si, which inhibits the adsorption of V and W from the leachate, the lowest W adsorption ratio was shown at pH 8.5. Desorption of W was hardly achieved in strongly acidic solutions, and desorption of V was well performed in both strongly acidic and strongly basic solutions.

Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties

  • Zhou, Jing-Jing;Liu, Kai-Yu;Kong, Chun-Long;Chen, Liang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1625-1631
    • /
    • 2013
  • We report a facile synthetic approach of high-quality chromium(III) terephthalate [MIL-101(Cr)] by acetate-assisted method in the absence of toxic HF. Results indicate that the morphology and surface area of the MIL-101(Cr) can be tuned by modifying the molar ratio of acetate/$Cr(NO_3)_3$. The Brunauer-Emmett-Teller (BET) surface area of MIL-101(Cr) synthesized at the optimized condition can exceed 3300 $m^2/g$. It is confirmed that acetate could promote the dissolution of di-carboxylic linker and accelerate the nucleation ratio. So the pure and small size of MIL-101(Cr) with clean pores can be obtained. $CO_2$, $CH_4$ and $N_2$ adsorption isotherms of the samples are studied at 298 K and 313 K. Compared with the traditional method, MIL-101(Cr) synthesized by acetate-assisted method possess enhanced $CO_2$ selective adsorption capacity. At 1.0 bar 298 K, it exhibits 47% enhanced $CO_2$ adsorption capacity. This may be attributed to the high surface area together with clean pores of MIL-101(Cr).

Characteristics of Equilibrium, Kinetic and Thermodynamic for Adsorption of Acid Blue 40 by Activated Carbon (활성탄에 의한 Acid Blue 40 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.592-599
    • /
    • 2018
  • The kinetics and thermodynamics of the adsorption of acid blue 40 from an aqueous solution by activated carbon were examined as a function of the activated carbon dose, pH, temperature, contact time, and initial concentration. The adsorption efficiency in a bathtub was increased at pH 3 and pH 11 due to the presence of sufonate ions ($SO_3{^-}$) and amine ions ($NH_2{^+}$). The equilibrium adsorption data were fitted to the Langmuir, Freundlich and Temkin isotherms. The results indicated that the Langmuir model provides the best correlation of the experimental data. The separation factor of the Langmuir and Freundlich model showed that the adsorption treatment of acid blue 40 by activated carbon could be an effective adsorption process. The adsorption energy determined by the Temkin equation showed that the adsorption step is a physical adsorption process. Kinetics analysis of the adsorption process of acid blue 40 on activated carbon showed that a pseudo second order kinetic model is more consistent than a pseudo second order kinetic model. The estimated activation energy was 42.308 kJ/mol. The enthalpy change (80.088 J/mol) indicated an endothermic process. The free energy change (-0.0553 ~ -5.5855 kJ/mol) showed that the spontaneity of the process increased with increasing adsorption temperature.

The Adsorption and Desorption of SO4-2 in the Garlic Field (마늘 재배지토양(栽培地土壤) 중 SO4-2의 흡(吸), 탈착(脫着))

  • Chang, Gi-Chul;Chang, Sang-Moon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.327-332
    • /
    • 1987
  • Soil samples were collected from the paddy soils growing two crops of rice and garlic in Kyung-pook province. To obtain the basic information on the application of S-fertilizer in the garlic field, the adsorption and release amount of $SO_4{^{-2}}$ in subsoil samples were determined. The ranges of $SO_4{^{-2}}$ contents in surface and sub-soil were 59-117 and 34-102 ppm, respectively. The amount of $SO_4{^{-2}}$ adsorbed by soil samples was found to be more at lower pH and higher concentration of $SO_4{^{-2}}$. The $SO_4{^{-2}}$ adsorption constants in Freundlich equation tended to be higher at lower pH. It is apparent that most of $SO_4{^{-2}}$ was released in the first extraction. However, the lower the pH of extracted solution, the more the $SO_4{^{-2}}$ contents was released by distilled water.

  • PDF

Adsorption of 2-Cyanonaphthalene on Silver Sol Investigated by Raman Spectroscopy$^\dag$

  • Park, Seong Hyeon;Lee, Eun A;Jang, Du Jeon;Kim, Myeong Su;Kim, Gwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.130-134
    • /
    • 1995
  • Surface-enhanced Raman (SER) scattering of 2-cyanonaphthalene (2-CN) has been investigated in silver sol. Addition of halide ions was needed to obtain authentic SER spectra of the molecule. The SER spectra thus obtained exhibited a slight but noticeable dependence on the kind of halide ions used. This halide-dependent spectral variation was attributed to the orientational change of molecule on silver sol surface. A possible mechanism for such an orientational change is proposed in terms of the competitive adsorption of 2-CN with halide ions on the so-called halide-specific sites.