DOI QR코드

DOI QR Code

Characteristics of Equilibrium, Kinetic and Thermodynamic for Adsorption of Acid Blue 40 by Activated Carbon

활성탄에 의한 Acid Blue 40 흡착에 있어서 평형, 동력학 및 열역학적 특성

  • Lee, Jong Jib (Division of Chemical Engneering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2018.08.24
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

The kinetics and thermodynamics of the adsorption of acid blue 40 from an aqueous solution by activated carbon were examined as a function of the activated carbon dose, pH, temperature, contact time, and initial concentration. The adsorption efficiency in a bathtub was increased at pH 3 and pH 11 due to the presence of sufonate ions ($SO_3{^-}$) and amine ions ($NH_2{^+}$). The equilibrium adsorption data were fitted to the Langmuir, Freundlich and Temkin isotherms. The results indicated that the Langmuir model provides the best correlation of the experimental data. The separation factor of the Langmuir and Freundlich model showed that the adsorption treatment of acid blue 40 by activated carbon could be an effective adsorption process. The adsorption energy determined by the Temkin equation showed that the adsorption step is a physical adsorption process. Kinetics analysis of the adsorption process of acid blue 40 on activated carbon showed that a pseudo second order kinetic model is more consistent than a pseudo second order kinetic model. The estimated activation energy was 42.308 kJ/mol. The enthalpy change (80.088 J/mol) indicated an endothermic process. The free energy change (-0.0553 ~ -5.5855 kJ/mol) showed that the spontaneity of the process increased with increasing adsorption temperature.

활성탄에 의해 수용액으로부터 acid blue 40을 흡착하는 과정을 통해 흡착평형, 동력학 및 열역학적 특성을 활성탄 양, pH, 온도, 접촉시간, 초기농도를 함수로 해서 알아내고자 하였다. 활성탄에 대한 acid blue 40의 흡착에 대한 pH별 흡착특성은 Sulfonate ion($SO_3{^-}$)과 amine ion($NH_2{^+}$)의 존재 때문에 pH 3과 pH 11에서 흡착률이 높아지는 욕조현상을 나타내었다. 활성탄에 대한 Acid Blue 40의 흡착평형관계를 흡착등온식에 적용해본 결과 Langmuir 식이 Freundlich 식과 Temkin 식보다 더 잘 맞는 것으로 나타났다. Langmuir 식과 Freundlich 식의 분리계수로 부터 활성탄에 의한 Acid Blue 40의 흡착처리가 유효한 흡착공정이 될 수 있음을 알았다. Temkin 식에 의해 구한 흡착에너지 값으로부터 흡착공정이 물리흡착공정이라는 것을 알았다. 활성탄에 대한 acid blue 40의 흡착공정에 대한 동력학적 해석을 통해 반응속도식의 적용결과는 유사이차반응속도식이 유사일차반응속도식에 비해 일치도가 높은 것으로 나타났다. 평가된 활성화 에너지 값은 42.308 kJ/mol이었으며, 엔탈피변화는 80.088 J/mol로 흡열반응의 특성을 가지는 것으로 판단되었다. 또한 자유에너지변화가 -0.0553~-5.5855 kJ/mol로 온도가 올라갈수록 흡착공정의 자발성이 더 높아진다는 것을 알았다.

Keywords

SHGSCZ_2018_v19n12_592_f0001.png 이미지

Fig. 1. Molecular structure of acid blue 40.

SHGSCZ_2018_v19n12_592_f0002.png 이미지

Fig. 2. Effect of activated carbon dose for adsorption of acid blue 40.

SHGSCZ_2018_v19n12_592_f0003.png 이미지

Fig. 3. Effect of pH for adsorption of acid blue 40.

SHGSCZ_2018_v19n12_592_f0004.png 이미지

Fig. 4. Langmuir isotherm of acid blue 40 on activated carbon at different temperature.

SHGSCZ_2018_v19n12_592_f0005.png 이미지

Fig. 5. Freundlich isotherm of acid blue 40 on activated carbon at different temperature.

SHGSCZ_2018_v19n12_592_f0006.png 이미지

Fig. 6. Temkin isotherm of acid blue 40 on activated carbon at different temperature.

SHGSCZ_2018_v19n12_592_f0007.png 이미지

Fig. 7. Pseudo first order kinetic plots for adsorption of acid blue 40 by activated carbon at various concentration.

SHGSCZ_2018_v19n12_592_f0008.png 이미지

Fig. 8. Pseudo second order kinetic plots for adsorption of acid blue 40 by activated carbon at various concentration.

SHGSCZ_2018_v19n12_592_f0009.png 이미지

Fig. 9. Pseudo second order kinetic plots for adsorption of acid blue 40 by activated carbon at various temperature.

Table 1. Physical properties of activated carbon.

SHGSCZ_2018_v19n12_592_t0001.png 이미지

Table 2. Isotherm constants for adsorption of acid blue 40 on activated carbon.

SHGSCZ_2018_v19n12_592_t0002.png 이미지

Table 3. Pseudo first order and Pseudo second order kinetic model parameters for adsorption of acid blue 40 by activated carbon at various concentration.

SHGSCZ_2018_v19n12_592_t0003.png 이미지

Table 4. Pseudo second order kinetic model parameters for adsorption of acid blue 40 by activated carbon at various concentration.

SHGSCZ_2018_v19n12_592_t0004.png 이미지

Table 5. Thermodynamic parameters for adsorption of acid blue 40 by activated carbon

SHGSCZ_2018_v19n12_592_t0005.png 이미지

References

  1. A. Reife and H. S. Freeman, Pollution prevention in the production of dyes and pigments, Text. Chem. Color. Am. Dyes. Rep., 32, 56-60, (2000)
  2. I. A. W. Tan, A. L. Ahmad and B. H. Hameed, Adsorption of basic dye on high-surfacearea activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater. 154, 337-346, (2008) DOI: https://doi.org/10.1016/j.jhazmat.2007.10.031
  3. W. Z. Tang and H. An, Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO,/UV in aqueous solution," Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33199, USA (1995)
  4. T. Akar., A. S. Ozcan., S. Tunali and A. Ozcan, Biosorption of a textile dye(acid blue 40) by cone biomass of Thuja orietalis: Estimation of equilibrium, thermodynamic and kinetic paramerters, Biores. Technol. 99(8), 3057-3065, 2008) DOI: https://doi.org/10.1016/j.biortech.2007.06.029
  5. M. Ozacar and I. A. Seagil, Adsorption of acid dyes from aqueous solution by calcined alunite and granular activated carbon." Department of chemistry, Science and arts Faculty, Sakarya University, 54100 Sakarya, Turkey, 2002.
  6. M. L. Fertterolf, H. V. Patel and J. M. Jennings, Adsorption of methylene blue and acid blue 40 on titania from aqueous solution, J. Chem. Emng. Data., 48(4) 831-835, (2003) DOI: https://doi.org/10.1021/je025589r
  7. W. T. Tsai, Y. M. Chang, C. W. Lai and C. C. Lo, Adsorption of ethyl violet dye in aqueous solution by regenerated spent bleaching earth", J. Coll. Interf. Sci., 289, 333-338, (2005), DOI: https://doi.org/10.1016/j.jcis.2005.03.087
  8. J. J. Lee, Isotherm, kinetic and thermodynamic characteristics for adsorption congo red by activated carbon, Korean Chem. Eng. Res., 53(1), 1-7, (2015) DOI: https://doi.org/10.9713/kcer.2015.53.1.64
  9. A. S. Elsherbiny, Adsorption kinetics and mechanism of acid dye onto montmorillonite from aqueous solutions: stopped-flow measurements, Appl. Clay. Sci., 83-84, 56-62, (2013) DOI: https://dx.doi.org/10.1016/j.clay.2013.07.014
  10. J. J. Lee, Equilibrium, kinetics and thermodynamic parameters studies on metanil yellow dye adsorption by granular activated carbon, Appl. Chem. Eng., 25, 96-102, (2014) DOI: https://dx.doi.org/10.14478/ace.2013.1122
  11. S. Nethaji, A. Sivasamy, G. Thennarasu and S. Saravanan, Adsorption of malachite green dye onto activated carbon derived from borassus aethiopum flower biomass", J. Hazard. Mater., 181, 271-280, (2010) DOI: https://dx.doi.org/10.1016/j.jhazmat.2010.05.008
  12. Y. Onal, C. A. BaSar, D. Eren, C. S. Onalzdemir and T. Depci, Adsorption kinetics of malachite green onto activated carbon prepared from tunçbilek lignite, J. Hazard. Mater. B128, 150-157, (2006) DOI: https://doi.org/10.1016/j.jhazmat.2005.07.055
  13. Hameed, B., El-Khaiary, M. Kinetics and equilibrium studies of Malachite Green adsorption on rice straw-derived char, J. Harzad. Mater., 153, 701-708, (2008) DOI: https://dx.doi.org/10.1016/j.jhazmat.2007.09.019
  14. M. T. Sulak, E. Demirbas, M. Kobya, Removal of astrazon yellow 7GL from aqueous solutions by adsorption onto wheat bran", Biores. Technol. 98, 2590-2598, (2007) DOI: https://dx.doi.org/10.1016/j.biortech.2006.09.010