DOI QR코드

DOI QR Code

Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties

  • Zhou, Jing-Jing (School of Chemistry and Chemical Engineering, Central South University) ;
  • Liu, Kai-Yu (School of Chemistry and Chemical Engineering, Central South University) ;
  • Kong, Chun-Long (Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences) ;
  • Chen, Liang (Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences)
  • Received : 2013.02.07
  • Accepted : 2013.03.02
  • Published : 2013.06.20

Abstract

We report a facile synthetic approach of high-quality chromium(III) terephthalate [MIL-101(Cr)] by acetate-assisted method in the absence of toxic HF. Results indicate that the morphology and surface area of the MIL-101(Cr) can be tuned by modifying the molar ratio of acetate/$Cr(NO_3)_3$. The Brunauer-Emmett-Teller (BET) surface area of MIL-101(Cr) synthesized at the optimized condition can exceed 3300 $m^2/g$. It is confirmed that acetate could promote the dissolution of di-carboxylic linker and accelerate the nucleation ratio. So the pure and small size of MIL-101(Cr) with clean pores can be obtained. $CO_2$, $CH_4$ and $N_2$ adsorption isotherms of the samples are studied at 298 K and 313 K. Compared with the traditional method, MIL-101(Cr) synthesized by acetate-assisted method possess enhanced $CO_2$ selective adsorption capacity. At 1.0 bar 298 K, it exhibits 47% enhanced $CO_2$ adsorption capacity. This may be attributed to the high surface area together with clean pores of MIL-101(Cr).

Keywords

References

  1. Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869. https://doi.org/10.1021/cr200190s
  2. Ma, S. Q.; Sun, D. F.; Wang, X. S.; Zhou, H. C. Angew. Chem. Int. Ed. 2007, 46, 2458. https://doi.org/10.1002/anie.200604353
  3. Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem. Int. Ed. 2005, 44, 4670. https://doi.org/10.1002/anie.200462786
  4. Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Science 2005, 309, 1350. https://doi.org/10.1126/science.1113247
  5. Chen, B. L.; Yang, Y.; Zapata, F.; Lin, G. N.; Qian, G. D.; Lobkovsky, E. B. Adv. Mater. 2007, 19, 1693. https://doi.org/10.1002/adma.200601838
  6. Huang, Y.; Zheng, Z.; Liu, T.; Lü, J.; Lin, Z.; Li, H.; Cao, R. Catal. Commun. 2011, 14, 27. https://doi.org/10.1016/j.catcom.2011.07.004
  7. Horcajada, P.; Surble, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche, J. M.; Margiolaki, I.; Ferey, G. Chem. Commun. 2007, 27, 2820.
  8. Bromberg, L.; Diao, Y.; Wu, H.; Speakman, S. A.; Hatton, T. A. Chem. Mater. 2012, 24, 1664. https://doi.org/10.1021/cm2034382
  9. Luo, J. H.; Xu, H. W.; Liu, Y.; Zhao, Y. S.; Daemen, L. L.; Brown, C.; Timofeeva, T.V.; Ma, S. Q.; Zhou, H. C. J. Am. Chem. Soc. 2008, 130, 9626. https://doi.org/10.1021/ja801411f
  10. Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933. https://doi.org/10.1021/cr200304e
  11. Jhung, S. H.; Lee, J. H.; Yoon, J. W.; Serre, C.; Ferey, G.; Chang, J. S. Adv. Mater. 2007, 19, 121. https://doi.org/10.1002/adma.200601604
  12. Khan, N. A.; Kang, I. J.; Seok, H. Y.; Jhung, S. H. Chem. Eng. J. 2011, 166, 1152. https://doi.org/10.1016/j.cej.2010.11.098
  13. Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Chem. Commun. 2008, 47, 6336.
  14. Friscic, T.; Reid, D. G.; Halasz, I.; Stein, R. S.; Dinnebier, R. E.; Duer, M. J. Angew. Chem. Int. Ed. 2010, 49, 712. https://doi.org/10.1002/anie.200906583
  15. Klimakow, M.; Klobes, P.; Thunemann, A. F.; Rademann, K.; Emmerling, F. Chem. Mater. 2010, 22, 5216. https://doi.org/10.1021/cm1012119
  16. Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Langmuir 2008, 24, 8634. https://doi.org/10.1021/la8008656
  17. Ahmed, I.; Jeon, J.; Khan, N. A.; Jhung, S. H. Cryst. Growth Des. 2012, 12, 5878. https://doi.org/10.1021/cg3014317
  18. Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Langmuir 2011, 27, 15261. https://doi.org/10.1021/la203570h
  19. Barthelet, K.; Adil, K.; Millange, F.; Serre, C.; Riou, D.; Ferey, G. J. Mater. Chem. 2003, 13, 2208. https://doi.org/10.1039/b306852h
  20. Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040. https://doi.org/10.1126/science.1116275
  21. Huang, L. M.; Wang, H. T.; Chen, J. X.; Wang, Z. B.; Sun, J. Y.; Zhao, D. Y.; Yan, Y. S. Micropor. Mesopor. Mater. 2003, 58, 105. https://doi.org/10.1016/S1387-1811(02)00609-1
  22. Loiseau, T.; Lecroq, L.; Volkringer, C.; Marrot, J.; Ferey, G.; Haouas, M.; Taulelle, F.; Bourrelly, S.; Llewellyn, P. L.; Latroche, M. J. Am. Chem. Soc. 2006, 128, 10223. https://doi.org/10.1021/ja0621086
  23. Liu, X.; Zhou, H.; Zhang, Y.; Liu, Y.; Yuan, A. Chin. J. Chem. 2012, 30, 2563. https://doi.org/10.1002/cjoc.201200575
  24. Bernt, S.; Guillerm, V.; Serre, C.; Stock, N. Chem. Commun. 2011, 47, 2838. https://doi.org/10.1039/c0cc04526h
  25. Lebedev, O. I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Ferey, G. Chem. Mater. 2005, 17, 6525. https://doi.org/10.1021/cm051870o
  26. Li, Y. W.; Yang, R. T. AIChE J. 2008, 54, 269. https://doi.org/10.1002/aic.11362
  27. Jiang, D.; Burrows, A. D.; Edler, K. J. CrystEngComm 2011, 13, 6916. https://doi.org/10.1039/c1ce06274c
  28. Liu, Y. Y.; Ju-Lan, Z.; Jian, Z.; Xu, F.; Sun, L. X. Int. J. Hydrogen Energy 2007, 32, 4005. https://doi.org/10.1016/j.ijhydene.2007.04.029
  29. Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon, L.; De Weireld, G.; Chang, J. S.; Hong, D. Y.; Hwang, Y. K.; Jhung, S. H.; Ferey, G. Langmuir 2008, 24, 7245. https://doi.org/10.1021/la800227x
  30. Senkovska, I.; Kaskel, S. Micropor. Mesopor. Mater. 2008, 112, 108. https://doi.org/10.1016/j.micromeso.2007.09.016
  31. Chowdhury, P.; Bikkina, C.; Gumma, S. J. Phys. Chem. C 2009, 113, 6616. https://doi.org/10.1021/jp811418r
  32. Khan, N. A.; Jun, J. W.; Jhung, S. H. Eur. J. Inorg. Chem. 2010, 2010, 1043. https://doi.org/10.1002/ejic.200901064
  33. Yang, J.; Zhao, Q.; Li, J.; Dong, J. Micropor. Mesopor. Mater. 2010, 130, 174. https://doi.org/10.1016/j.micromeso.2009.11.001
  34. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Chem. Rev. 2012, 112, 724. https://doi.org/10.1021/cr2003272
  35. Maksimchuk, N. V.; Timofeeva, M. N.; Melgunov, M. S.; Shmakov, A. N.; Chesalov, Y. A.; Dybtsev, D. N.; Fedin, V. P.; Kholdeeva, O. A. J. Catal. 2008, 257, 315. https://doi.org/10.1016/j.jcat.2008.05.014
  36. Chen, Y. F.; Babarao, R.; Sandler, S. I.; Jiang, J. W. Langmuir 2010, 26, 8743. https://doi.org/10.1021/la904502h
  37. Serre, C.; Millange, F.; Surble, S.; Férey, G. Angew. Chem. Int. Ed.2004, 43, 6285. https://doi.org/10.1002/anie.200454250
  38. Zhang, Z.; Huang, S.; Xian, S.; Xi, H.; Li, Z. Energy Fuels 2011,25, 835. https://doi.org/10.1021/ef101548g
  39. Saha, D.; Bao, Z. B.; Jia, F.; Deng, S. G. Environ. Sci. Technol.2010, 44, 1820. https://doi.org/10.1021/es9032309
  40. Zheng, B.; Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M. J. J. Am. Chem. Soc. 2011, 133, 748. https://doi.org/10.1021/ja110042b
  41. Chowdhury, P.; Mekala, S.; Dreisbach, F.; Gumma, S. Micropor. Mesopor. Mater. 2012, 152, 246. https://doi.org/10.1016/j.micromeso.2011.11.022

Cited by

  1. HF-free synthesis of MIL-101(Cr) and its hydrogen adsorption studies vol.35, pp.2, 2015, https://doi.org/10.1002/ep.12239
  2. High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr) vol.44, pp.38, 2015, https://doi.org/10.1039/C5DT02625C
  3. A MIL-101(Cr) and Graphene Oxide Composite for Methane-Rich Stream Treatment vol.31, pp.8, 2017, https://doi.org/10.1021/acs.energyfuels.7b00917
  4. Synthesis of MIL-101@g-C3N4 nanocomposite for enhanced adsorption capacity towards CO2 pp.1573-4854, 2018, https://doi.org/10.1007/s10934-017-0433-y
  5. Benzoic acid as a selector–modulator in the synthesis of MIL-88B(Cr) and nano-MIL-101(Cr) vol.48, pp.3, 2019, https://doi.org/10.1039/C8DT04186E
  6. The effect of reaction mixture movement on the performance of chromium-benzenedicarboxylate, MIL-101(Cr), applicable for CO2 adsorption through a new circulating solvothermal synthesis process vol.17, pp.1, 2013, https://doi.org/10.1007/s13738-019-01746-8
  7. Comparison of Catalytic Activity of Chromium-Benzenedicarboxylate Metal-Organic Framework Based on Various Synthetic Approach vol.10, pp.3, 2013, https://doi.org/10.3390/catal10030318
  8. A Polyoxometalate Composite Based on Hierarchical MIL-101 with Enhanced Catalytic Activity in Methanolysis of Styrene Oxide vol.10, pp.7, 2013, https://doi.org/10.3390/catal10070772