Browse > Article
http://dx.doi.org/10.5229/JKES.2004.7.4.194

Constant Correlation Factors between Temkin and Langmuir or Frumkin Adsorption Isotherms at Poly-Pt, Re, and Ni/Aqueous Electrolyte Interfaces  

Chun Jang H. (Department of Electronic Engineering, Kwangwoon University)
Jeon Sang K. (Department of Electronic Engineering, Kwangwoon University)
Chun Jin Y. (School of Chemical Engineering, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.7, no.4, 2004 , pp. 194-200 More about this Journal
Abstract
The constant correlation factors between the Temkin and the Langmuir or the Frumkin adsorption isotherms of over-potentially deposited hydrogen (OPD H) for the cathodic H2 evolution reaction (HER) at poly-Pt and Re/0.5M $H_2SO_4$ and poly-Ni/0.05 M KOH aqueous electrolyte interfaces have been experimentally and consistently found using the phase-shift method. At intermediate values of the fractional surface coverage $(\theta),\;i.e.,\;02<{\theta}<0.8$, the Langmuir and Temkin adsorption isotherms of OPD H for the cathodic HER are correlated to each other even though the adsorption conditions or processes are different from each other. At the same range of $\theta$, correspondingly, the Frumkin and Temkin adsorption isotherms of OPD H for the cathodic HER are correlated to each other. The equilibrium constants $(K_o)$ for the Temkin adsorption isotherms $({\theta}\;vs.\; E)$ are consistently ca. 10 times greater than those (K, Ko) for the corresponding Langmuir or Frumkin adsorption isotherms ($({\theta}\;vs.\; E)$. The interaction parameters (g) for the Temkin adsorption isotherms $({\theta}\;vs.\; E)$ are consistently ra. 4.6 greater than those (g) for the corresponding Langmuir or Frumkin adsorption isotherms $({\theta}\;vs.\; E)$. These numbers (10 times and 4.6) can be taken as constant correlation factors between the corresponding adsolftion isotherms (Temkin, Langmuir, Frumkin) at the interfaces. The Temkin adsorption isotherm corresponding to the Langmuir or the Frumkin adsorption isotherm, and vice versa, can be effectively verified or confirmed using the constant correlation factors. Both the phase-shift methodand constant correlation factors are useful and effective for determining or confirming the suitable adsorption isotherms (Temkin, Langmuir, Frumkin) of intermediates for sequential reactions in electrochemical systems.
Keywords
Constant correlation factors; Langmuir; Frumkin; and Temkin adsorption isotherms; Phase-shift method.;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. H. Chun, K. H. Ra, and N. Y. Kim, J. Electrochem. Soc., 149, E325 (2002)   DOI   ScienceOn
2 J. H. Chun, K. H. Ra, and N. Y. Kim, J. Electrochem. Soc., 150, E207 (2003)   DOI   ScienceOn
3 J. H. Chun, K. H. Ra, and N. Y. Kim, in Abstracts of the 203rd Electrochemical Society (ECS) Meeting, Vol. 2003-01, Abstract 1270, The Electrochemical Society, April 27-May 2, Paris, France(2003)
4 J. H. Chun and S. K. Jeon, Int. J Hydrogen Energy, 28, 1333 (2003)   DOI   ScienceOn
5 J. H. Chun, U.S. Pat. 6,613,218 (2003)
6 J. H. Chun and N. Y. Kim, in Proceedings of the 4th International Conference 'HTM-2004', May 17-21, pp. 387-393, International Scientific Committee on Hydrogen Treatment of Materials (HTM), Donetsk-Svyatogorsk, Ukraine (2004)
7 J. H. Chun, K. H. Ra, and N. Y Kim, J. Electrochem. Soc., 151, L11(2004)   DOI
8 J. H. Chun, S. K. Jeon, B. K. Kim, and J. Y. Chun, Int. J. Hydrogen Energy, in press (available via the Internet at http://www.sciencedirect.com/science/journal/03603199)
9 J. H. Chun, S. K. Jeon, K. H. Ra, and J. Y. Chun, Int. J. Hydrogen Energy, in press (available via the Internet at http://www.sciencedirect.com/science/journal/03603199)
10 J. H. Chun, S. K. Jeon, N. Y. Kim, and J. Y. Chun, Int. J. Hydrogen Energy , will be published
11 E. Gileadi, E. Kirowa-Eisner, and J. Penciner, Interfacial Electrochemistry,pp. 6, 72, Addison-Wesley Pub. Co. Reading, MA (1975)
12 F. T. Wagner and P. N. Ross, J. Electroanal. Chem., 150, 141 (1983)   DOI   ScienceOn
13 J. Jiang and A. Kucernak, Electrochem Solid-State Lett., 3, 559(2000)   DOI   ScienceOn
14 E. Gileadi, in Electrosorption, E. Gileadi, Editor, pp. 1-18, Plenum Press, New York (1967)
15 E. Gileadi, E. Kirowa-Eisner, and J. Penciner, Interfacial Electrochemistry,pp. 75-86, Addison-Wesley Pub. Co. Reading, MA(1975)
16 E. Gileadi, Electrode Kinetics, pp. 261-280, VCH, New York (1993)
17 J. OM. Bockris and S. U. M. Khan, Surface Electrochemistry, pp.261, 280-283, Plenum Press, New York (1993)
18 J. OM. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry, 2nd Edition, Vol. 2A, pp. 1193-1201, Kluwer Academic/Plenum Pub. Co. New York (2000)
19 B. E. Conway, G. Jerkiewicz, Editors, Electrochemistry and Materials Science of Cathodic Hydrogen Absorption and Adsorption, PV 94-21, The Electrochemical Society Proceeding Series, Pennington, NJ (1995)
20 G. Jerkiewicz, Prog. Surf. Sci., 57, 137 (1998)   DOI   ScienceOn
21 G. Jerkiewicz, J. M. Feliu, and B. N. Popov, Editors, Hydrogen at Surface and Interfaces, PV 2000-16, The Electrochemical Society Proceeding Series, Pennington, NJ (2000)
22 J. H. Chun and K. H. Ra, J. Electrochem. Soc., 145, 3794 (1998)   DOI   ScienceOn
23 J. H. Chun and K. H. Ra, in Hydrogen at Surface and Interfaces, G. Jerkiewicz, J. M. Feliu, B. N. Popov, Editors, PV 2000-16, pp. 159-173,The Electrochemical Society Proceedings Series, Pennington, NJ (2000)
24 J. H. Chun, K. H. Ra, and N. Y. Kim, Int. J. Hydrogen Energy, 26,941 (2001)   DOI   ScienceOn
25 J. H. Chun, S. K. Jeon, and J. H. Lee, J. Korean Electrochem. Soc.,5, 131 (2002)   DOI   ScienceOn
26 E. Gileadi, E. Kirowa-Eisner, and J. Penciner, Interfacial Electrochemistry, pp. 472-475, Addison-Wesley Pub. Co. Reading, MA(1975)