• Title/Summary/Keyword: SNU-16 cell

Search Result 53, Processing Time 0.028 seconds

Growth Inhibitory Patterns by Adenoviral p16 Transduction in HCC Cell Lines with Different pRB Status

  • Kim Keun-Cheol
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.421-427
    • /
    • 2005
  • To evaluate the diagnostic significance of p16 overexpression in human hepatocellular carcinoma (HCC), we analyzed p16 status and growth inhibitory patterns by p16 overexpression in HCC cell lines having different pRE status. SKHep1 and SNU449 cells show homozygous deletion of p16. The p16 gene in SNU398 cell is inactivated at posttranscription level. Adenovira1-p16 (Ad-p16) infection inhibits the cell growth in Hep3B, SNU398, and SNU449. Failure of growth inhibition in SKHepl results from the low transduction efficiency of adenovirus. The p16-mediated growth inhibition shows G 1 phase arrest in pRE-positive SNU449 but not in pRE-negative Hep3B. These results suggest that therapeutic efficacy of p16 gene might be considered on the transduction efficiency and the toxicity of adenoviral vector. Beside, growth inhibitory effect of p16 could be exerted through either pRE-dependent or -independent pathway.

  • PDF

Synthesis and in vitro Antitumor Activity of 2-Alkyl, 2-Aryl, and 2-Piperazinyl Benzimidazole-4, 7-dione Derivatives

  • Ahn, Chan-Mug;Tak, Jung-Ae;Choi, Sun-Ju
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.288-301
    • /
    • 2000
  • A series of 2-alkyl, 2-aryl, and 2-piperazinyl benzimidazole-4,7-dione derivatives (7a-h) and 16m-o) were prepared, and their cytotoxicities were tested against three cancer cell lines (mouse lymphocytic leukemia cell line P388, and human gastric carcinoma cell lines SNU-1 and SNU-16). These compounds showed potent cytotoxicity against all of three cell lines tested, and especially SNU-16 was sensitive to them. 2-Aryl (7g,h) and 2-piperazinyl benzimidazole-4,7-dione derivative (I6 m) were more potent than mitomycin C against P388 and SNU-16. Among benzimidazole-4,7-dione derivatives with alkyl group at position 2, 7a had the most potent cytotoxicity against all of the cell lines tested.

  • PDF

Anticancer Effect of Persimmon Leaf Extracts on Korean Gastric Cancer Cell (감잎의 물 및 에탄올 추출물이 한국인 위암 세포주에 미치는 항암효과)

  • Kim, Ho-Jung;Kim, Mi-Kyung
    • Journal of Nutrition and Health
    • /
    • v.36 no.2
    • /
    • pp.133-146
    • /
    • 2003
  • This study was performed to investigate the in vitro and in vivo anticancer effects of persimmon leaf extracts on human gastric cancer cells. In vitro anticancer effects of persimmon leaf extracts (water extract at 8$0^{\circ}C$ for 3 hours, water extract at room temperature for 48 hours, 50% ethanol extract at 8$0^{\circ}C$ for 3 hours, 50% ethanol extract at room temperature for 48 hours, 75% ethanol extract at 8$0^{\circ}C$ for 3 hours and 75% ethanol extract at room temperature for 48 hours) on SNU16 (Korean gastric cancer cell) were investigated by MTT assay. Persimmon leaf extracts exhibited strong in vitro anticancer effects. We found that the higher the ethanol content of the solvent, the stronger the in vitro anticancer effects. Extraction yields, contents of flavonoids, vitamin A, vitamin C and vitamin E were measured. We found that the higher the ethanol content of the solvent, the higher the extraction yields and the contents of flavonoids, vitamin A and vitamin E. Among persimmon leaf extracts, 75% ethanol 8$0^{\circ}C$ extract showed the highest extraction yield, the highest contents of flavonoids, vitamin A and vitamin E and exhibitied the strongest in vitro anticancer effect on SNU16. Therefore, 75% ethanol 8$0^{\circ}C$ extract was chosen as the material to investigate in vivo anticancer effects. In vivo anticancer effect of persimmon leaf 75% ethanol 8$0^{\circ}C$ extract was investigated in SNU16 transplanted nude mice. Twenty five female nude mice (BALB/c) were blocked into five groups according to body weight and raised for 4 weeks with diets containing 4% (w/w), 8% (w/w) persimmon leaf 75% ethanol 8$0^{\circ}C$ extract, with IT (intratumoral) injection treatment with 1.65 mg/100 $\mu$1, 3.3 mg/100 $\mu$1 concentration every other day 3 weeks after SNU16 was transplanted. Persimmon 75% ethanol 8$0^{\circ}C$ extract significantly lowered tumor weight and tumor volume in SNU16 transplanted nude mice. Tumor weight and tumor volume in all experimental groups were significantly lower than those in the control group. Helper T cell (CD4) levels of mice injected with 3.3 mg/100 $\mu$1 extract significantly increased. Cytotoxic T cell (CD8) levels in all experimental groups significantly increased and helper/cytotoxic T cell ratios in all experimental groups significantly decreased. Natural killer cell and MHC class II molecule in all experimental groups significantly increased. In conclusion, persimmon leaf 75% ethanol 8$0^{\circ}C$ extract exhibited strong in vitro and in vivo anticancer effects against SNU16 cells and it increased cytotoxic T cell, natural killer cell and MHC classII molecule in experimental groups in SNU16 transplanted nude mice.

Comparative susceptibility of different cell lines for culture of Toxoplasma gondii in vitro (톡소플라스마 곤디의 세포내 배양에 있어서 세포 주에 따른 감수성 비교)

  • 박병규;문형로
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.3
    • /
    • pp.215-222
    • /
    • 1993
  • In order to establish a useful cell culture system for T gondii we compared the degree of proliferation of T gondii tachyzoites among 8 different cell lines: 2 kinds of normal animal cells (MDCK-canine kidney cells; Vero-monkey kidney cells) and 6 kinds of human tumor cells (A 549, PC 14-lung cancer cells; SNU 1, SNU 16. Mlm 45-stomach cancer cells; HL-60-promyelocytic leukemia cells), through morphological observation and 3H-uracil uptake assay. The degree of susceptibility to infection with T gondii tachyzoites was highest in A 549 and PC 14 cells, medium in Vero, HL-60, MDCK and SNU 1, and lowest in SNU 16 and MBm 45 cells. The kinetics of T gondii multiplication during the post-Infection 60 hours were higllly dependent upon the dose of tachyzoites administered and the duration among the 8 tested fur the growth and multiplication of T gondii in vitro.

  • PDF

Development of the Functional Beverage Containing the Prunus mume Extracts (매실 추출물을 함유한 기능성 음료 개발)

  • Bae, Ji-Hyun;Kim, Ki-Jin;Kim, Sung-Mi;Lee, Won-Jae;Lee, Sun-Jang
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.713-719
    • /
    • 2000
  • This study was performed to investigate the cytotoxic effect of the Prunus mume extracts containing beverages on the growth of SNU-16 gastric cancer cell, SNU-C2A colon cancer cell, SNU-449 liver cancer cell and HeLa cervical cancer cell. The inhibitory effect on the growth of the cancer cell lines was examined by MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, cytotoxicity test and microscopy. Also this study aimed to compare the changes of blood electrolytes and osmolarity during submaximal exercise for the intake of the Prunus mume extracts containing beverages. 20% Prunus mume extracts containing beverage exhibited the greatest inhibitory effect on the growth of SNU-16 and significantly inhibited at the concentration of $1000\;{\mu}g/mL$ in the MTT assay. Morphological changes in SNU-16 which treated with the same beverage were observed under inverted microscope. The change of blood electrolytes and osmolarity during submaximal exercise showed no significant differences between before and after intake of the beverage in both groups.

  • PDF

The effect of retinoic acid on the expression of cell adhesion molecules and binding ability to peritoneal mesothelium in gastric cancer cells (위암세포에서 세포유착물질의 발현 및 위암세포의 복막 내피세포에 대한 결합 능에 미치는 retinoicacid의 영향)

  • Hong, Young Seon;Park, Cho Hyun;Park, Jin-No;Lee, Kyung Shik;Kim, In Chul
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.36-44
    • /
    • 2001
  • Background : Peritoneal metastasis is one of the maj or types of the stomach cancer recurrence and the role of the adhesion molecules is thought to be very much important in this event. Retinoic acid (RA) has been known to induce the growth inhibition and differentiation of various malignancies, and apoptpsis and the change of expression of adhesion molecules have been reported to be involved in the action of RA. Methods : We studied the adhesion abilities of SNU-1, SNU-5, and SNU-6 cells to the peritoneal endothelial cells as well as the expression of the adhesion molecules (CD44, ICAM-1) in Western blot analysis. And also we studied the expression of apoptosis and the change of expression patterns of the various isoforms of CD44 and the change of the adhsion abilities of the cell line cells after RA treatment. Results: CD44 was expressed in SNU-5 and -16, together with an isoform in SNU-16. ICAM-1 was not expressed in any of the cell line cells tested. After the treatment of RA in the concentration range of $1-5{\times}10^{-5}M$ to three stomach cancer cell lines, growth inhibition, apoptosis and the change of expression of the CD44 were noted. After RA treatment, the expression of CD44H was weakly increased in SNU-1, and was markedly increased in SNU-5. In SNU-16, the expression of CD44H was decreased while that of CD44E were markedly increased. The adhesibility of cells to peritoneal cells was increased in relation with the increase of the CD44H expression, which shows the fact that the adhesibility of tumor cells to peritoneal mesothelial cells is mediated by CD44H recognizing hyaluronic acid. Conclusion : RA induces growth inhibition of stomach cancer cell line cells and increase the adhesiblity of stomach cancer cell line cells to peritoneal mesothelium. It is believed that RA decreases the metastatic ability of stomach cancer cells by upregulating the CD44H expression.

  • PDF

Multidrug Resistance and Cytotoxicity of Anticancer Drug by Verapamil in Cisplatin Resistant Human Stomach Cancer Cell (Cispatin 내성인 사람 위암 세포주 SNU-1의 복합약제내성 및 Verapamil의 효과)

  • Son, Seong-Kweon;Kim, Jung-Hye
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.1
    • /
    • pp.75-89
    • /
    • 1992
  • The development of multi drug-resistant tumor cell population is a major problem in the chemotherapy of human cancer. These cells are often cross resistant to unrelated drugs and the precise mechanisms of multidrug resistant phenotype of tumor cells has not been fully elucidated. Cisplatin resistant tumor cell(SNU-1/$Cis_5$) was induced from human stomach cancer cell line(SNU-1) in vitro. Growth profiles of survival cells were observed during 5 days by thiazolyl blue (MTT) assay. To investigate the cross resistance of various anticancer drugs in SNU-1 and SNU-1/$Cis_5$, We compared the value of $IC_{50}$ - drug concentration at 50% survival of control and gained relative resistances (RR). The RR for SNU-1/$Cis_5$ were as follows; vinblastine, > 43.0 ; epirubicin, 22.9 ; dactinomycin, 16.0 ; etoposide, 15.0 ; vincristine, 9.2 ; adriamycin, 5.7 ; aclarubicin, 5.3. But 5-fluorouracil, methotrexate, daunorubicin have not cross resistance with cisplatin. Resistant inhibition values of $10{\mu}M$ verapamil for SNU-1/$Cis_5$ were as follows; vincristine, 13.1 ; epirubicin, 10.0 ; etoposide, 6.3 ; vinblastine, 4.4 ; dactinomycin, 3.6 ; daunorubicin, 2.4. Membrane proteins of 51,400 and 81,300 daltons were identified by radioiodination with SDS-PAGE, which might represented the drug resistance.

  • PDF

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells (SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.809-816
    • /
    • 2019
  • The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.

Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes (사람 암세포와 단핵세포에서 고포도당 농도에 의한 FDG 섭취 저하의 서로 다른 기전)

  • Kim, Chae-Kyun;Chung, June-Key;Lee, Yong-Jin;Hong, Mee-Kyoung;Jeong, Jae-Min;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.110-120
    • /
    • 2002
  • To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied $[^{18}F]$ fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5 - 10.8 mU/mg), while SNU-C5 and monocytes showed lower range of hexokinase activity (4.3 - 6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells (SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.501-512
    • /
    • 2020
  • Sasa quelpaertensis Nakai leaf has been used as a folk medicine for the treatment of gastric ulcer, dipsosis, and hematemesis based on its anti-inflammatory, antipyretic, and diuretic characteristics. We have previously reported the procedure for deriving a phytochemical-rich extract (PRE) from S. quelpaertensis and how PRE and its ethyl acetate fraction (EPRE) exhibits an anticancer effect by inducing apoptosis in various gastric cancer cells. To explore the molecular targets involved in this apoptosis, we investigated the mRNA and microRNA profiles of EPRE-treated SNU-16 human gastric cancer cells. In total, 2,875 differentially expressed genes were identified by RNA sequencing, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the EPRE-modulated genes are associated with apoptosis, mitogen-activated protein kinase, inflammatory response, tumor necrosis factor signaling, and cancer pathways. Subsequently, protein-protein interaction network analysis confirmed interactions among genes associated with cell death and apoptosis, and 27 differentially expressed microRNAs were identified by further sequencing. Here, GO and KEGG pathway analysis revealed that EPRE modified the expression of microRNAs associated with the cell cycle and cell death, as well as signaling of tropomyosin-receptor-kinase receptor, transforming growth factor-b, nuclear factor kB, and cancer pathways. Taken together, these results provide insight into the mechanisms underlying the anticancer effect of EPRE.