This research aims to investigate 'Hallyu' contents consumption tendency of consumers from Korea, Japan, and the United States by analyzing their emotional responses. With the development of social media, research on emotion analysis by reviewing text materials has grown. Whereas environmental variables affect consumer demand towards 'Hallyu' contents, little comparative analyses have been conducted on the emotional responses of consumers from different countries. In this research, the emotional prototype model proposed by Russell(1980) used to extract and distinguish emotional words to clarify how people in the three countries differently perceive the Korean drama "Goblin". First of all, the SNS reviews were collected during a two-month period (February 12 to April 12). Second, significant factors were identified in the collected data according to Russell's emotion model. Third, random forest was applied to organize the selected variables in the order of variable importance. Fourth, the correlations among the emotional words were compared. Lastly, the accuracy of the trained model was measured using the test dataset. The results show that "Happy" was found to be the greatest factor in Korea and in the United States and "Pleased" in Japan. Emotional words correlations showed that when watching the drama "Goblin", "passive unpleasure" was the main factor associated with individual's interest in Korea whereas "passive pleasure" was associated with individual's interest in Japan and in the United States. Based on the results, this research suggests the possibility of developing evaluation guidelines for emotional responses of different countries towards 'Hallyu' contents.
In recent years, IT advancement has brought out the new Internet communication environment such as online social network services, where people are connected in global network without temporal and spatial limitation. The popular use of online social network helps people share their experience and preference for specific products and services, thus holding large potential to significantly affect firms' business performance through Word-of-Mouth (WOM). This study examines the role of online social network in raising WOM effect on the movie industry by comparing with the similar role of Internet portal, another major online communication channel. Analyzing 109 movies and data from both Twitter and Naver movie, we found that significant WOM effect exists simultaneously in both Twitter and Naver movie. However, we also found that different figures of online viral effects exist depending on the popularity of movies. In the hit movie group, before the movie release, the WOM effect occurs only in Twitter while the WOM effect arises in both Twitter and Naver movie at the same time after the movie release. In the less-popular (or niche) movie group, the WOM effect occurs in both Twitter and Naver movie only before the movie release. Our findings not only deepen theoretical insights into different roles of the two online communication channels in provoking the WOM effect on entertainment products but also provide practitioners with incentive to utilize SNS as strategic marketing platform to enhance their brand reputations.
In the era of SNS, many people relies on it to express their emotions about various kinds of products and services. Therefore, for the companies eagerly seeking to investigate how their products and services are perceived in the market, emotion mining tasks using dataset from SNSs become important much more than ever. Basically, emotion mining is a branch of sentiment analysis which is based on BOW (bag-of-words) and TF-IDF. However, there are few studies on the emotion mining which adopt feature selection (FS) methods to look for optimal set of features ensuring better results. In this sense, this study aims to propose FS methods to conduct emotion mining tasks more effectively with better outcomes. This study uses Twitter and SemEval2007 dataset for the sake of emotion mining experiments. We applied three FS methods such as CFS (Correlation based FS), IG (Information Gain), and ReliefF. Emotion mining results were obtained from applying the selected features to nine classifiers. When applying DT (decision tree) to Tweet dataset, accuracy increases with CFS, IG, and ReliefF methods. When applying LR (logistic regression) to SemEval2007 dataset, accuracy increases with ReliefF method.
The purpose of this study is to examine whether organizational justice, including procedural justice and distributive justice, improve employees' innovative behavior through work engagement and knowledge sharing. In addition, it was conducted to investigate whether work engagement and knowledge sharing indirectly affect the relationship between organizational justice and innovative behavior. For the hypothesis test of this study, Hayes (2018) PROCESS Macro was used. Result of the analysis shows that procedural justice, work engagement, and knowledge sharing influenced innovative behavior. The constructs influencing work engagement were procedural justice, distributive justice, knowledge sharing. Also, procedural justice and work engagement were constructs that affected knowledge sharing. In the relationship between procedural justice and innovative behavior, the indirect effect was confirmed in all paths. In the relationship between the distributive justice and the innovative behavior, It was confirmed that there is not the indirect effect only in the path via knowledge sharing. he indirect effect was confirmed in all paths that did not acquire knowledge sharing. In addition, through the PROCESS Macro analysis, we examined the magnitude of the indirect effect of various paths between mediators. The results show that organizational justice can have the greatest effect on innovative behavior through work engagement. The weakness of respondents control by SNS survey is the major limitation of this study. In the future, Further research is needed depending on the nature of the organization, such as the analysis of differences between various industries.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.6
/
pp.350-361
/
2019
The fourth industrial revolution based on the intelligent revolution has revolutionized the society as a whole, and it has also affected the defense sector. Various aspects of the war have been changing with the development of technology. In particular, various strategies such as research and development of core technology related to defense unmanned system field and infrastructure are being established based on the fourth industrial revolution technology. In this paper, we have conducted a study to select the technology required for maritime unmanned systems, which can be considered as a priority consideration for the future development of the core technology to be secured prior to the development of the weapon system. First, the core technology prioritization model for the marine unmanned system was established, and the technology fields of the unmanned robot were reclassified and integrated in the related literature such as the classification of the defense technology standard. For the empirical analysis, a questionnaire survey was conducted for 12 specialists who are engaged in the planning of weapons systems, and the importance of technical fields that require development in the development of marine unmanned systems was analyzed. As a result, it was possible to identify the key technology areas that should be considered in selecting the key technologies proposed by the military groups, research institutes, and companies. This could contribute to the establishment of the technology roadmap to develop the marine unmanned system from the future point of view.
The purpose of this study is to allow beginner level English learners to experience the English speaking task using pictures, and to analyze the meanings of the experience using a phenomenological research method. As research participants, 10 freshmen majoring in Power Generation Facilities at Korean Polytechnic University in Gangwon-do were selected. Face-to-face interviews and SNS were used for data collection, and Colaizzi's research method was adopted for data analysis. As a result of the analysis, 9 themes, 4 theme clusters, and 2 categories were derived. The results are as follows. First, the participants were able to find hope that they could speak English at their own level through the English speaking task using pictures. Second, they stated that the effect of the visual medium of painting increased concentration and curiosity and lowered anxiety. Third, it was recognized that self-confidence, a speaker like a native speaker, and quickness of speaking improved due to familiarity with speaking English. Fourth, the biggest difficulty in the English speaking task was vocabulary. So, they felt the limitation in explaining the picture, and they were having a lot of trouble in translating Korean words into English words. Finally, through the results of this study, the effect of the medium of picture was confirmed, and necessary future studies were suggested.
Recently, the recommender system has been widely used in various fields such as movies, music, online shopping, and social media, and in the meantime, the recommender model has been developed from correlation analysis through the Apriori model, which can be said to be the first-generation model in the recommender system field. In 2005, many models have been proposed, including deep learning-based models, which are receiving a lot of attention within the recommender model. The recommender model can be classified into a collaborative filtering method, a content-based method, and a hybrid method that uses these two methods integrally. However, these basic methods are gradually losing their status as methodologies in the field as they fail to adapt to internal and external changing factors such as the rapidly changing user-item interaction and the development of big data. On the other hand, the importance of deep learning methodologies in recommender systems is increasing because of its advantages such as nonlinear transformation, representation learning, sequence modeling, and flexibility. In this paper, among deep learning methodologies, RNN, CNN, and GAN-based models suitable for sequential modeling that can accurately and flexibly analyze user-item interactions are classified, compared, and analyzed.
Journal of the Korean Institute of Landscape Architecture
/
v.51
no.4
/
pp.16-30
/
2023
As the concept of metaverse has received great attention, interest in metaverse related to landscape architecture is also increasing. The aim of this research is to understand the potential and tasks of applying metaverse in the field of landscape architecture by analyzing the user experience of a metaverse platform. The object of the research is Meta-Everland built in the Roblox platform, which has the most users among landscape architectural metaverses in Korea. NPS of 30 users who have been to Everalnd was investigated after using Meta-Everland with interviews. NPS before the metaverse experience was -16 and NPS after the experience was -24. This result means that the promotion level was lowered after the experience of the metaverse. There were three causes of lowered NPS: lack of users, low-quality graphics and interface, and lack of content. The factor of lack of users was the result of the other two problems. The factor of low technical quality is hard to be improved in a short period of time. Therefore, the main task to improve the metaverse is developing better metaverse content related to landscape architecture. It is more appropriate to develop metaverse-specific content rather than improve reality issues. Applying AR and VR devices, enhancing communication function, and developing potential as a simulation device are needed to be considered.
The Journal of Korean Institute of Next Generation Computing
/
v.13
no.5
/
pp.7-18
/
2017
Recently, the number of SNS user has rapidly increased due to smart device industry development and also the amount of generated data is exponentially increasing. In the twitter, Text data generated by user is a key issue to research because it involves events, accidents, reputations of products, and brand images. Twitter has become a channel for users to receive and exchange information. An important characteristic of Twitter is its realtime. Earthquakes, floods and suicides event among the various events should be analyzed rapidly for immediately applying to events. It is necessary to collect tweets related to the event in order to analyze the events. But it is difficult to find all tweets related to the event using normal keywords. In order to solve such a mentioned above, this paper proposes A Generation and Matching Method of Normal-Transient Dictionary for realtime topic detection. Normal dictionaries consist of general keywords(event: suicide-death-loop, death, die, hang oneself, etc) related to events. Whereas transient dictionaries consist of transient keywords(event: suicide-names and information of celebrities, information of social issues) related to events. Experimental results show that matching method using two dictionary finds more tweets related to the event than a simple keyword search.
The purpose of this study is to investigate the most effective emoticon type in on-line communication context through analysis decoding(by their interpretation, empathy, reaction) of receiver about emotional message included the various emoticon types. Message types were all 5 - only text message and messages included texticon, graphicon, anicon, and photocon that reflected the transitional process of emoticon. Survey questionnaire that included various emotional situations was developed and utilized to undergraduate students to analyze the differences in their gender and majors. Results are as follow. First, the graphicon, anicon and photocon messages had higher effectiveness than others in the pleasure while the text only message had the highest effectiveness of them in the displeasure. Second, female students responded that the graphicon, anicon and photocon messages were more effective while male students responded that text only message was. Third, between Arts/Physical and Science/Engineering majors had significant differences in some message types, and especially Science/Engineering majors showed higher average than other majors in all of the emoticon types. These results can provide the information to design messages by the emotional situation of sender and gender and major of receiver.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.