• Title/Summary/Keyword: SNP imputation

Search Result 17, Processing Time 0.022 seconds

Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population

  • Jattawa, Danai;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.464-470
    • /
    • 2016
  • The objective of this study was to investigate the accuracy of imputation from low density (LDC) to moderate density SNP chips (MDC) in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n = 1,244) from 145 dairy farms were genotyped with GeneSeek GGP20K (n = 570), GGP26K (n = 540) and GGP80K (n = 134) chips. After checking for single nucleotide polymorphism (SNP) quality, 17,779 SNP markers in common between the GGP20K, GGP26K, and GGP80K were used to represent MDC. Animals were divided into two groups, a reference group (n = 912) and a test group (n = 332). The SNP markers chosen for the test group were those located in positions corresponding to GeneSeek GGP9K (n = 7,652). The LDC to MDC genotype imputation was carried out using three different software packages, namely Beagle 3.3 (population-based algorithm), FImpute 2.2 (combined family- and population-based algorithms) and Findhap 4 (combined family- and population-based algorithms). Imputation accuracies within and across chromosomes were calculated as ratios of correctly imputed SNP markers to overall imputed SNP markers. Imputation accuracy for the three software packages ranged from 76.79% to 93.94%. FImpute had higher imputation accuracy (93.94%) than Findhap (84.64%) and Beagle (76.79%). Imputation accuracies were similar and consistent across chromosomes for FImpute, but not for Findhap and Beagle. Most chromosomes that showed either high (73%) or low (80%) imputation accuracies were the same chromosomes that had above and below average linkage disequilibrium (LD; defined here as the correlation between pairs of adjacent SNP within chromosomes less than or equal to 1 Mb apart). Results indicated that FImpute was more suitable than Findhap and Beagle for genotype imputation in this Thai multibreed population. Perhaps additional increments in imputation accuracy could be achieved by increasing the completeness of pedigree information.

Comparison of three boosting methods in parent-offspring trios for genotype imputation using simulation study

  • Mikhchi, Abbas;Honarvar, Mahmood;Kashan, Nasser Emam Jomeh;Zerehdaran, Saeed;Aminafshar, Mehdi
    • Journal of Animal Science and Technology
    • /
    • v.58 no.1
    • /
    • pp.1.1-1.6
    • /
    • 2016
  • Background: Genotype imputation is an important process of predicting unknown genotypes, which uses reference population with dense genotypes to predict missing genotypes for both human and animal genetic variations at a low cost. Machine learning methods specially boosting methods have been used in genetic studies to explore the underlying genetic profile of disease and build models capable of predicting missing values of a marker. Methods: In this study strategies and factors affecting the imputation accuracy of parent-offspring trios compared from lower-density SNP panels (5 K) to high density (10 K) SNP panel using three different Boosting methods namely TotalBoost (TB), LogitBoost (LB) and AdaBoost (AB). The methods employed using simulated data to impute the un-typed SNPs in parent-offspring trios. Four different datasets of G1 (100 trios with 5 k SNPs), G2 (100 trios with 10 k SNPs), G3 (500 trios with 5 k SNPs), and G4 (500 trio with 10 k SNPs) were simulated. In four datasets all parents were genotyped completely, and offspring genotyped with a lower density panel. Results: Comparison of the three methods for imputation showed that the LB outperformed AB and TB for imputation accuracy. The time of computation were different between methods. The AB was the fastest algorithm. The higher SNP densities resulted the increase of the accuracy of imputation. Larger trios (i.e. 500) was better for performance of LB and TB. Conclusions: The conclusion is that the three methods do well in terms of imputation accuracy also the dense chip is recommended for imputation of parent-offspring trios.

A New Method for Imputation of Missing Genotype using Linkage Disequilibrium and Haplotype Information (결측치가 존재하는 유전형 자료에서의 연관불균형과 일배체형을 사용한 결측치 대치 방법)

  • Park Yun-Ju;Kim Young-Jin;Park Jung-Sun;Kim Kuchan;Koh Insong;Jung Ho-Youl
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.99-107
    • /
    • 2005
  • In this paper, wc propose a now missing imputation method for minimizing loss of information linkage disequilibrium-based and haplotype-based imputation method, which estimate missing values of the data based on the specificity of Single Nucleotide Polymorphism(SNP) genotype data. Method for imputing data is needed to minimize the loss of information caused by experimental missing data. In general, missing imputation of biological data has used major allele imputation method. but this approach is not optima]. 1'his method has high error rates of missing values estimation since the characteristics of the genotype data are not considered not take into consideration the specific structure of the data. In this paper, we show the results of the comparative evaluation of our model methods and major imputation method for the estimation of missing values.

Accuracy of genotype imputation based on reference population size and marker density in Hanwoo cattle

  • Lee, DooHo;Kim, Yeongkuk;Chung, Yoonji;Lee, Dongjae;Seo, Dongwon;Choi, Tae Jeong;Lim, Dajeong;Yoon, Duhak;Lee, Seung Hwan
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1232-1246
    • /
    • 2021
  • Recently, the cattle genome sequence has been completed, followed by developing a commercial single nucleotide polymorphism (SNP) chip panel in the animal genome industry. In order to increase statistical power for detecting quantitative trait locus (QTL), a number of animals should be genotyped. However, a high-density chip for many animals would be increasing the genotyping cost. Therefore, statistical inference of genotype imputation (low-density chip to high-density) will be useful in the animal industry. The purpose of this study is to investigate the effect of the reference population size and marker density on the imputation accuracy and to suggest the appropriate number of reference population sets for the imputation in Hanwoo cattle. A total of 3,821 Hanwoo cattle were divided into reference and validation populations. The reference sets consisted of 50k (38,916) marker data and different population sizes (500, 1,000, 1,500, 2,000, and 3,600). The validation sets consisted of four validation sets (Total 889) and the different marker density (5k [5,000], 10k [10,000], and 15k [15,000]). The accuracy of imputation was calculated by direct comparison of the true genotype and the imputed genotype. In conclusion, when the lowest marker density (5k) was used in the validation set, according to the reference population size, the imputation accuracy was 0.793 to 0.929. On the other hand, when the highest marker density (15k), according to the reference population size, the imputation accuracy was 0.904 to 0.967. Moreover, the reference population size should be more than 1,000 to obtain at least 88% imputation accuracy in Hanwoo cattle.

Imputation Accuracy from 770K SNP Chips to Next Generation Sequencing Data in a Hanwoo (Korean Native Cattle) Population using Minimac3 and Beagle (Minimac3와 Beagle 프로그램을 이용한 한우 770K chip 데이터에서 차세대 염기서열분석 데이터로의 결측치 대치의 정확도 분석)

  • An, Na-Rae;Son, Ju-Hwan;Park, Jong-Eun;Chai, Han-Ha;Jang, Gul-Won;Lim, Dajeong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1255-1261
    • /
    • 2018
  • Whole genome analysis have been made possible with the development of DNA sequencing technologies and discovery of many single nucleotide polymorphisms (SNPs). Large number of SNP can be analyzed with SNP chips, since SNPs of human as well as livestock genomes are available. Among the various missing nucleotide imputation programs, Minimac3 software is suggested to be highly accurate, with a simplified workflow and relatively fast. In the present study, we used Minimac3 program to perform genomic missing value substitution 1,226 animals 770K SNP chip and imputing missing SNPs with next generation sequencing data from 311 animals. The accuracy on each chromosome was about 94~96%, and individual sample accuracy was about 92~98%. After imputation of the genotypes, SNPs with R Square ($R^2$) values for three conditions were 0.4, 0.6, and 0.8 and the percentage of SNPs were 91%, 84%, and 70% respectively. The differences in the Minor Allele Frequency gave $R^2$ values corresponding to seven intervals (0, 0.025), (0.025, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 0.3). (0.3, 0.4) and (0.4, 0.5) of 64~88%. The total analysis time was about 12 hr. In future SNP chip studies, as the size and complexity of the genomic datasets increase, we expect that genomic imputation using Minimac3 can improve the reliability of chip data for Hanwoo discrimination.

Accuracy of Imputation of Microsatellite Markers from BovineSNP50 and BovineHD BeadChip in Hanwoo Population of Korea

  • Sharma, Aditi;Park, Jong-Eun;Park, Byungho;Park, Mi-Na;Roh, Seung-Hee;Jung, Woo-Young;Lee, Seung-Hwan;Chai, Han-Ha;Chang, Gul-Won;Cho, Yong-Min;Lim, Dajeong
    • Genomics & Informatics
    • /
    • v.16 no.1
    • /
    • pp.10-13
    • /
    • 2018
  • Until now microsatellite (MS) have been a popular choice of markers for parentage verification. Recently many countries have moved or are in process of moving from MS markers to single nucleotide polymorphism (SNP) markers for parentage testing. FAO-ISAG has also come up with a panel of 200 SNPs to replace the use of MS markers in parentage verification. However, in many countries most of the animals were genotyped by MS markers till now and the sudden shift to SNP markers will render the data of those animals useless. As National Institute of Animal Science in South Korea plans to move from standard ISAG recommended MS markers to SNPs, it faces the dilemma of exclusion of old animals that were genotyped by MS markers. Thus to facilitate this shift from MS to SNPs, such that the existing animals with MS data could still be used for parentage verification, this study was performed. In the current study we performed imputation of MS markers from the SNPs in the 500-kb region of the MS marker on either side. This method will provide an easy option for the labs to combine the data from the old and the current set of animals. It will be a cost efficient replacement of genotyping with the additional markers. We used 1,480 Hanwoo animals with both the MS data and SNP data to impute in the validation animals. We also compared the imputation accuracy between BovineSNP50 and BovineHD BeadChip. In our study the genotype concordance of 40% and 43% was observed in the BovineSNP50 and BovineHD BeadChip respectively.

KARE Genomewide Association Study of Blood Pressure Using Imputed SNPs

  • Hong, Kyung-Won;Lim, Ji-Eun;Kim, Young-Jin;Cho, Nam-H.;Shin, Chol;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.103-107
    • /
    • 2010
  • The imputation of untyped SNPs enables researchers to validate association findings across SNP arrays and also enables them to test a large number of SNPs to reveal the fine structure of the association peak, facilitating interpretation of the results and the location of causal polymorphisms. In this study, we applied the imputation method to a genomewide association study and recapitulated the previously associated gene loci of blood pressure traits in Korean cohorts. A total of 1,827,004 SNPs were imputed by the IMPUTE program, and we conducted a genomewide association study for systolic and diastolic blood pressure. While no SNPs passed the Bonferroni correction p-value (p=$2.74{\times}10^{-8}$ for 1,827,004 SNPs), 12 novel loci for systolic blood pressure and 16 novel loci for diastolic blood pressure were detected by imputed SNPs, with $10^{-5}$ < p-value < $10^{-4}$. Moreover, 7 regions (ATP2B1, 10p15.1, ARHGEF12, ALX4, LIPC, 7q31.1, and TCF7L2) out of 14 genetic loci that were previously reported revealed that the imputed SNPs had lower p-values than those of genotyped SNPs. Moreover, a nonsynonymous SNP in the CSMD1 gene, one of the 14 genes, was found to be associated with systolic blood pressure (p<0.05). These results suggest that the imputation method can facilitate the discovery of novel SNPs as well as enhance the fine structure of the association peak in the loci.

A Scheme for Filtering SNPs Imputed in 8,842 Korean Individuals Based on the International HapMap Project Data

  • Lee, Ki-Chan;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.136-140
    • /
    • 2009
  • Genome-wide association (GWA) studies may benefit from the inclusion of imputed SNPs into their dataset. Due to its predictive nature, the imputation process is typically not perfect. Thus, it would be desirable to develop a scheme for filtering out the imputed SNPs by maximizing the concordance with the observed genotypes. We report such a scheme, which is based on the combination of several parameters that are calculated by PLINK, a popular GWA analysis software program. We imputed the genotypes of 8,842 Korean individuals, based on approximately 2 million SNP genotypes of the CHB+JPT panel in the International HapMap Project Phase II data, complementing the 352k SNPs in the original Affymetrix 5.0 dataset. A total of 333,418 SNPs were found in both datasets, with a median concordance rate of 98.7%. The concordance rates were calculated at different ranges of parameters, such as the number of proxy SNPs (NPRX), the fraction of successfully imputed individuals (IMPUTED), and the information content (INFO). The poor concordance that was observed at the lower values of the parameters allowed us to develop an optimal combination of the cutoffs (IMPUTED${\geq}$0.9 and INFO${\geq}$0.9). A total of 1,026,596 SNPs passed the cutoff, of which 94,364 were found in both datasets and had 99.4% median concordance. This study illustrates a conservative scheme for filtering imputed SNPs that would be useful in GWA studies.

Accuracy of genomic-polygenic estimated breeding value for milk yield and fat yield in the Thai multibreed dairy population with five single nucleotide polymorphism sets

  • Wongpom, Bodin;Koonawootrittriron, Skorn;Elzo, Mauricio A.;Suwanasopee, Thanathip;Jattawa, Danai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1340-1348
    • /
    • 2019
  • Objective: The objectives were to compare variance components, genetic parameters, prediction accuracies, and genomic-polygenic estimated breeding value (EBV) rankings for milk yield (MY) and fat yield (FY) in the Thai multibreed dairy population using five single nucleotide polymorphism (SNP) sets from GeneSeek GGP80K chip. Methods: The dataset contained monthly MY and FY of 8,361 first-lactation cows from 810 farms. Variance components, genetic parameters, and EBV for five SNP sets from the GeneSeek GGP80K chip were obtained using a 2-trait single-step average-information restricted maximum likelihood procedure. The SNP sets were the complete SNP set (all available SNP; SNP100), top 75% set (SNP75), top 50% set (SNP50), top 25% set (SNP25), and top 5% set (SNP5). The 2-trait models included herd-year-season, heterozygosity and age at first calving as fixed effects, and animal additive genetic and residual as random effects. Results: The estimates of additive genetic variances for MY and FY from SNP subsets were mostly higher than those of the complete set. The SNP25 MY and FY heritability estimates (0.276 and 0.183) were higher than those from SNP75 (0.265 and 0.168), SNP50 (0.275 and 0.179), SNP5 (0.231 and 0.169), and SNP100 (0.251and 0.159). The SNP25 EBV accuracies for MY and FY (39.76% and 33.82%) were higher than for SNP75 (35.01% and 32.60%), SNP50 (39.64% and 33.38%), SNP5 (38.61% and 29.70%), and SNP100 (34.43% and 31.61%). All rank correlations between SNP100 and SNP subsets were above 0.98 for both traits, except for SNP100 and SNP5 (0.93 for MY; 0.92 for FY). Conclusion: The high SNP25 estimates of genetic variances, heritabilities, EBV accuracies, and rank correlations between SNP100 and SNP25 for MY and FY indicated that genotyping animals with SNP25 dedicated chip would be a suitable to maintain genotyping costs low while speeding up genetic progress for MY and FY in the Thai dairy population.

A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods

  • Jong Hyun Jung;Sang Min Lee;Sang-Hyon Oh
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.807-816
    • /
    • 2024
  • Objective: This study aims to identify the significant regions and candidate genes of growth-related traits (adjusted backfat thickness [ABF], average daily gain [ADG], and days to 90 kg [DAYS90]) in Korean commercial GGP pig (Duroc, Landrace, and Yorkshire) populations. Methods: A genome-wide association study (GWAS) was performed using single-nucleotide polymorphism (SNP) markers for imputation to Illumina PorcineSNP60. The BayesB method was applied to calculate thresholds for the significance of SNP markers. The identified windows were considered significant if they explained ≥1% genetic variance. Results: A total of 28 window regions were related to genetic growth effects. Bayesian GWAS revealed 28 significant genetic regions including 52 informative SNPs associated with growth traits (ABF, ADG, DAYS90) in Duroc, Landrace, and Yorkshire pigs, with genetic variance ranging from 1.00% to 5.46%. Additionally, 14 candidate genes with previous functional validation were identified for these traits. Conclusion: The identified SNPs within these regions hold potential value for future marker-assisted or genomic selection in pig breeding programs. Consequently, they contribute to an improved understanding of genetic architecture and our ability to genetically enhance pigs. SNPs within the identified regions could prove valuable for future marker-assisted or genomic selection in pig breeding programs.