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Abstract
Genome-wide association (GWA) studies may benefit 
from the inclusion of imputed SNPs into their dataset. 
Due to its predictive nature, the imputation process is 
typically not perfect. Thus, it would be desirable to de-
velop a scheme for filtering out the imputed SNPs by 
maximizing the concordance with the observed geno-
types. We report such a scheme, which is based on the 
combination of several parameters that are calculated 
by PLINK, a popular GWA analysis software program. 
We imputed the genotypes of 8,842 Korean individuals, 
based on approximately 2 million SNP genotypes of the 
CHB＋JPT panel in the International HapMap Project 
Phase II data, complementing the 352k SNPs in the 
original Affymetrix 5.0 dataset. A total of 333,418 SNPs 
were found in both datasets, with a median con-
cordance rate of 98.7%. The concordance rates were 
calculated at different ranges of parameters, such as the 
number of proxy SNPs (NPRX), the fraction of success-
fully imputed individuals (IMPUTED), and the information 
content (INFO). The poor concordance that was ob-
served at the lower values of the parameters allowed us 
to develop an optimal combination of the cutoffs 
(IMPUTED≥0.9 and INFO≥0.9). A total of 1,026,596 
SNPs passed the cutoff, of which 94,364 were found in 
both datasets and had 99.4% median concordance. 
This study illustrates a conservative scheme for filtering 
imputed SNPs that would be useful in GWA studies.
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Introduction
Genome-wide association (GWA) studies that employ ul-
trahigh-density microarray chips and over several thou-
sand samples have been successful in mapping loci 

that are associated with diseases or epidemiological 
traits. However, in the course of the analyses, these 
studies have generated a large number of false pos-
itives, due to the multiple-testing nature in the statistical 
analysis or some bias in sampling. If multiple datasets 
of the same trait in different samples are available, the 
statistical power can be greatly improved by combining 
the studies through meta-analysis (de Bakker et al., 
2008). On the other hand, the results from a single da-
taset are typically validated via expensive replication 
studies. It would be of great help if the associations 
could be corroborated, based on some other in-
formation, such as linkage disequilibrium, that is readily 
available prior to the replication studies.
  Linkage disequilibrium (LD), the nonrandom associa-
tion of alleles at different loci, is the result of the evolu-
tionary history of a population, involving mutations, se-
lection, recombination, population bottlenecks, and ran-
dom genetic drift (Xiong & Jin 2007). A haplotype is a 
set of co-occurring polymorphic alleles on the same 
chromosome. The haplotype block model has particular 
implications in the study of dense markers, such as the 
single nucleotide polymorphism (SNP), because it im-
plies that a smaller number of markers (tagging SNPs) 
are necessary to uniquely distinguish different 
haplotypes. On the other hand, if a marker shows a 
strong association with a trait, then the other markers 
within the same haplotype block should show the same 
association. This idea has been implemented in GWA 
analysis software programs, including PLINK (Purcell et 
al., 2007), in various ways: direct association of each 
haplotype, proxy association, or LD-based clumping. 
These approaches require an accurate haplotype model. 
The quality of the haplotype models in a particular GWA 
dataset can be improved by phasing the haplotypes, 
based on the background genotypes of the ultra-
high-density International HapMap data.
  The International HapMap Project aims to produce 
such valuable haplotype information of the human ge-
nome (The International HapMap Consortium 2003). A 
total of 270 samples, 90 samples from each of three 
major ethnic groups-African, Asian, and European-were 
genotyped, phased, and released to the public freely 
(Thorisson et al., 2005). The second phase of the proj-
ect released the genotypes for over 2 million SNPs. The 
genotypes of the markers that were not included in the 
study dataset but were included in the reference data-
set, the International HapMap dataset, can be inferred if 
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the surrounding haplotypes of the study dataset are 
compatible with those of the reference. This is called 
imputation, because it is similar to filling in missing in-
formation in statistical analysis. Due to its predictive na-
ture, imputation is not perfect and is bound to generate 
some errors. Hence, we need a heuristic scheme to re-
duce the error. One may estimate the imputation error 
by calculating the concordance of the genotypes of a 
marker in the study dataset with those that are imputed 
for the same individual.
  Recently, a GWA study of quantitative traits with 
8,842 Korean individuals (Korea Association Resource 
(KARE)) was reported (Cho et al., 2009). In that study, 
SNP imputing and a subsequent association study were 
carried out with IMPUTE (Marchini et al., 2007) and 
SNPTEST (Marchini et al., 2007), respectively, and no fil-
tering scheme was reported. For the same dataset, we 
imputed HapMap SNPs using PLINK; evaluated the con-
cordance rate for various ranges of the parameters that 
were reported by PLINK, a popular GWA analysis soft-
ware; and developed heuristic cutoffs of those parame-
ters for filtering out potentially poorly imputed markers.

Methods

Genotype and HapMap data 

The genotype data that were used in this study were 
previously reported. Briefly, after standard quality control 
steps, a total of 352,228 SNPs for 8842 individuals were 
obtained. We called it the KARE (Korean Association 
Resource) dataset. A total of 351,677 SNP IDs of the 
dataset were converted from those of Affymetrix to 
those of dbSNP RefSNP IDs using an annotation file 
(Mapping250K_Nsp.na26.annot.csv) that was down-
loaded from the Affymetrix website. Among them, 
176,059 underwent strand flipping in order to conform 
to the +ve strand of NCBI human genome build 36. The 
genotypes of the JPT+CHB panel of International 
HapMap Phase II (The International HapMap Consortium 
2005) were downloaded from the PLINK website 
(http://pngu.mgh.harvard.edu/~purcell/plink/dist/hap-
map_JPT_CHB_r23a_filtered.zip). The dataset contains 
2.2 million markers that had been filtered for those that 
had a MAF greater than 0.01 and a genotyping rate in 
the CEU panel greater than 95%. These two datasets 
were subsequently merged into a single set, followed by 
a split into each chromosome for parallel job submi-
ssions.

SNP imputation 

PLINK, one of the most popular GWA analysis software 

programs, was used for SNP imputation. It works by 
phasing the haplotypes of the reference panel and using 
it to infer the alleles of the study panel. For phasing 
haplotypes, PLINK uses an EM algorithm. The SNPs of 
the study panel that are in LD with the imputed SNP are 
called proxies. If the genotypes of these proxies in 
some individuals in the study panel are not compatible 
with any of the haplotypes of the reference panel, the 
genotypes for these individuals cannot be imputed. 
PLINK reports the number of individuals who have suc-
cessful imputation for each marker. The quality of im-
putation is often estimated by the variance of the im-
puted allele dosage relative to that expected from the 
reference panel. PLINK reports this parameter as INFO 
(de Bakker et al., 2008). PLINK also reports the con-
cordance rate for each maker in the study panel . All of 
the PLINK jobs were performed on the 128-CPU cluster 
at Korean Bioinformation Center (http://www.kobic.re.kr). 
The results from PLINK runs were analyzed using locally 
developed R scripts.

Results
The KARE genotype data were merged with those of 
the International HapMap Phase II JPT＋CHB panel, re-
sulting in a total of 2,168,896 SNPs (CJK dataset). The 
genotypes of the KARE data were imputed using PLINK, 
based on the background haplotypes of the reference 
panel (the PLINK option “--proxy-impute all”). Among 
351,766 SNPs in the KARE dataset (called “OBSERVED”), 
333,418 were also found in the reference panel (called 
“OVERLAP”). The concordance rates for these SNPs 
were calculated, wherein the first quartile and median 
were 0.964 and 0.987, respectively. We surveyed the 
concordance rates at various intervals of key parame-
ters that were reported by PLINK. First, we examined 
the trend by the Hardy-Weinberg equilibrium (HWE) p 
value (PHWE ). Fig. 1A shows the boxplot of the con-
cordance rates at each bin of -log10 (PHWE ). The inter-
quartile range (IQR) that corresponds to the vertical di-
mension of the box increases as the deviation from 
HWE increases. While the third quartile remains virtually 
the same, the first quartile drops significantly with the 
increased deviation from HWE. The combination of IQR 
and the first quartile is represented by the lower 
“whisker,” which also shows a dramatic decrease at se-
vere deviation from HWE. At the rightmost bin, where 
PHWE＜10−7, the concordance was extremely poor for 
702 OVERLAP markers in this bin. We decided to ex-
clude markers that had PHWE＜10−6, where the lower 
“whisker” of the concordance rate dropped substan-
tially. It should be noted that the original KARE analysis 
also used a similar HWE cutoff (Cho et al., 2009).
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Fig. 1. Distribution of the concordance rates at each bin of the parameters reported by PLINK. The concordance between

the observed genotypes and imputed ones are viewed via boxplots for the bins of (A) −log10 (PHWE ), where PHWE is the 

Hardy-Weinberg Equilibrium p value; (B) IMPUTED, the fraction of imputed individuals in the KARE panel; (C) INFO, the rela-

tive variance of allele frequency of the imputed alleles; and (D) NPRX, the number of proxy SNPs for each observed marker.

  The imputation process in PLINK is based on the hap-
lotype that is formed by the neighboring markers within 
the LD block (so-called “proxies”). By comparing the 
genotypes of the proxies from the study panel (KARE, 
in this case) with those of the reference panel 
(HapMap), the compatible haplotypes are chosen and 
the alleles are assigned. If no compatible haplotypes are 
found for some of the individuals, their alleles cannot be 
assigned. PLINK provides a parameter called IMPUTED, 
which is the fraction of individuals whose genotypes 

were able to be imputed. It is implied that the haplotype 
structures of the study panel are less compatible with 
those of the reference panel as IMPUTED drops below 
1. With the increase of the incompatible fraction, the 
concordance is expected to drop. The concordance rate 
at each bin of IMPUTED is summarized in Fig. 1B. While 
the concordance at the rightmost bin was excellent, 
substantial deterioration in concordance was noticed as 
IMPUTED dropped. The relative variance of the imputed 
alleles of a marker is given as a parameter called INFO 
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Table 1. Distribution of concordance rates for various cutoffs

Lower Higher 
Cutoff Imputeda Overlapb 1st quartilec Medianc 3rd quartilec

whiskerc whiskerc

None 2,168,896 333,418 0.916 0.964 0.987 0.996 1.000

PHWE＞10−6 1,910,471 332,631 0.916 0.964 0.987 0.996 1.000

PHWE＞10−6, IMPUTED≥0.9 1,323,616 229,716 0.952 0.979 0.992 0.997 1.000

PHWE＞10−6, INFO≥0.9 1,098,100 194,492 0.965 0.984 0.993 0.997 1.000

PHWE＞10−6, IMPUTED≥0.9, INFO≥0.9 1,026,596 94,364 0.966 0.985 0.994 0.998 1.000

aNumber of all the SNP markers imputed.
bNumber of markers overlapping between KARE and HapMap Phase II JPT＋CHB datasets.
cBoxplot statistics of the concordance rates.

(de Bakker et al., 2008). Similar to IMPUTED, INFO is al-
so expected to show the compatibility in the haplotype 
structures of the two panels. Indeed, we noticed sig-
nificant deterioration in concordance at lower INFO val-
ues (Fig. 1C). One might anticipate that the more prox-
ies that are used, the more reliable the imputation is. 
Interestingly, the concordance was somewhat poorer 
with more proxies (Fig. 1D). Currently we have no ex-
planation for this, except that it might manifest in-
creased errors in haplotype phasing by the EM algo-
rithm for cases that have many proxies.
  The monotonous change in the concordance rate 
along these parameters allows development of cutoffs 
for filtering out poorly imputed markers. Application of 
these cutoffs inevitably loses some well-imputed mark-
ers and retains some poorly imputed ones. A combina-
tion of the cutoffs is expected to improve the overall 
concordance rate even more. Table 1 shows the con-
cordance statistics at various cutoffs. Introduction of a 
cutoff that was based on PHWE alone did not demon-
strate the improvement in the statistics, because the 
number of markers that were removed among OVERLAP 
was merely 787 (0.2%). However, it removed approx-
imately 10% of all of the imputed markers. An additional 
condition of IMPUTED≥0.9 dramatically improved the 
lower whisker from 0.916 to 0.952, at the expense of 
about 1/3 of markers. The cutoff that was based on 
INFO had an even higher impact. A combination of all 
three cutoffs showed the most improvement, although 
the statistics themselves improved marginally. One 
might argue that IMPUTED and INFO are correlated and 
that only one of them would be necessary. On the con-
trary, the combination of all three cutoffs retained only 
about 1/3 of the original markers. If both parameters 
had been well correlated, we would not have seen such 
a remarkable reduction in surviving markers. In fact, the 
correlation coefficient between INFO and IMPUTED for 
the 1,026,596 markers that survived the combined cut-
offs was 0.41353.

Discussion
This study intended to evaluate the performance of 
PLINK in imputing SNPs for the KARE population based 
on International HapMap Phase II JPT＋CHB. The im-
putation performance was measured in terms of the 
concordance between the observed and imputed 
genotypes. Correlations between the concordance rate 
and several parameters that were reported by PLINK 
were noticed, allowing us to develop a heuristic cutoff 
that reasonably improved the concordance rate. 
However, the application of such a cutoff inevitably 
caused the elimination of nearly half of the markers. If 
all of the HapMap SNPs had been retained and well im-
puted, the marker density would have been increased 
by 6-fold from the original KARE marker density. 
Consequently, the increase in the marker density at this 
filtering was only 3-fold, which is still substantially dens-
er than the original dataset. Such an expanded dataset 
would allow us to analyze the haplotype structure 
around a marker that shows an association with traits. 
The subsequent analysis, based on haplotype associa-
tion, would be a powerful tool, filtering out unlikely as-
sociation signals that might be caused by some non-
genotyping errors. Stable association of the haplotype 
that encompasses the original association signal from 
the unimputed dataset would corroborate that original 
association. Another application of the imputed dataset 
would be to discover an imputed marker, if any, that is 
nearby the original one and shows a stronger associa-
tion than it. However, any association signal from the 
imputed markers should be scrutinized carefully, be-
cause they are not directly observed experimentally and 
the imputation process cannot be perfect.
  It should be noted that the imputation work that is 
presented here has some limitations. The fact that half 
of the imputed SNPs had to be filtered out indicates a 
substantial difference in haplotype structures between 
the HapMap and KARE population. It would not empha-
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size the ethnic differences between Chinese, Japanese, 
and Koreans, because Chinese and Japanese are ge-
netically more distant from each other than from 
Koreans (Ahn et al., 2009). The haplotype difference 
may be attributed to the difference in sample size. 
Merging 45 Chinese and Japanese each to form 
90-individual genotype data may not capture the full 
spectra of haplotypes that are present in 8842 in-
dividuals of the KARE data. In other words, the hap-
lotype structures that are formed by the HapMap 
JPT+CHB would be accurate, considering the extremely 
high-density SNP markers. Although they may capture 
major haplotypes in an East Asian population, they may 
miss some low-frequency haplotypes that are present in 
the East Asian population, due to limited sample size. 
Further study that compares the haplotype structures of 
these two datasets would clarify this point. 
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