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Abstract

Background: Genotype imputation is an important process of predicting unknown genotypes, which uses
reference population with dense genotypes to predict missing genotypes for both human and animal genetic
variations at a low cost. Machine learning methods specially boosting methods have been used in genetic studies
to explore the underlying genetic profile of disease and build models capable of predicting missing values of a
marker.

Methods: In this study strategies and factors affecting the imputation accuracy of parent-offspring trios compared
from lower-density SNP panels (5 K) to high density (10 K) SNP panel using three different Boosting methods
namely TotalBoost (TB), LogitBoost (LB) and AdaBoost (AB). The methods employed using simulated data to impute
the un-typed SNPs in parent-offspring trios. Four different datasets of G1 (100 trios with 5 k SNPs), G2 (100 trios
with 10 k SNPs), G3 (500 trios with 5 k SNPs), and G4 (500 trio with 10 k SNPs) were simulated. In four datasets all
parents were genotyped completely, and offspring genotyped with a lower density panel.

Results: Comparison of the three methods for imputation showed that the LB outperformed AB and TB for imputation
accuracy. The time of computation were different between methods. The AB was the fastest algorithm. The higher SNP
densities resulted the increase of the accuracy of imputation. Larger trios (i.e. 500) was better for performance of LB and TB.

Conclusions: The conclusion is that the three methods do well in terms of imputation accuracy also the dense chip is
recommended for imputation of parent-offspring trios.
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Background
Innovations in genomic technologies provide new tools
for enhancing productivity and wellbeing of domestic
animals [1]. The technology can genotype some 10
million SNPs in an individual [2]. The availability of
some thousands of SNPs spread across the genome of
different livestock species opens up possibilities to include
genome-wide marker information in prediction of total
breeding values, to perform genomic selection [2]. Also a
major challenge in implementing genomic selection in
most species is the cost of genotyping [2]. Genotype
imputation is an important process of predicting unknown

genotypes, which uses reference population with dense
genotypes to predict missing genotypes for both human
and animal genetic variations at a low cost [2, 3]. Geno-
type imputation allows us to accurately evaluate the
evidence for association at genetic markers that are not
directly genotyped [4]. Analysis of un-typed SNPs can
facilitate the localization of disease-causing variants and
permit meta-analysis of association studies with different
genotyping platforms [5]. As un-typed SNPs are not
measured on any study subject, the missing information
cannot be recovered from the study data alone [5]. To
bring down genotyping costs, a reference population can
be genotyped with a high-density panel while other ani-
mals are genotyped with a low-density panel in which
markers are evenly spaced. Then, using information from
the reference population, genotypes for un-typed loci can
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be inferred for individuals genotyped with the low-
density panel [6]. Phasing and imputation methods
can be divided into family-based methods (which use
linkage information from close relatives) and population-
based methods, which use population linkage disequilib-
rium information [6]. A “trio” data consist of genotypes
from father-mother-child triplets and some phasing algo-
rithms are adapted to be used in this type of data [7]. The
accuracy of imputation depends on several factors, such
as the number of SNPs in the low density panel, the rela-
tionship between the animals genotyped, the effective
population size, and the method used [8]. Machine learn-
ing methods have been used in genetic studies to explore
the underlying genetic profile of disease and build models
capable of predicting missing values of a marker [9, 10].
Boosting is one of Machine learning methods for improv-
ing the predictive performance of classification or regres-
sion procedures which attempts to boost the accuracy of
any given learning algorithm by applying it several times
on slightly modified training data and then combining the
results in a suitable manner [11]. Several methods of
estimation have preceded boosting approach [12]. Com-
mon feature for all methods is that they work out by
extracting samples of a set, calculating the estimate for
each drawn sample group repeatedly and combining the
calculated results into unique one. One of the ways, the
simplest one, to manage estimation is to examine the
statistics of selected available samples from the set and
combine the results of calculation together by averaging
them [11, 12]. The main variation between many Boosting
Algorithms are the method of weighting training data
points and hypotheses. Gradient boosting is typically used
with decision trees of a fixed size as base learners [12]. In
this research the accuracies of three different boosting
methods i.e. (TotalBoost, LogitBoost, and AdaBoost) for
imputation of un-typed-SNPs of parent-offspring trios are
compared. The methods were compared in terms of
imputation accuracy, computation time and factors affect-
ing imputation accuracy. To evaluate the factors affecting
imputation accuracy, sample size and SNP density were
also examined.

Methods
The data simulation
Four Data sets at different marker densities were sim-
ulated using the statistical software package R [13].
The R package hypred [14] was modified to simulate
of data sets. A Historic Population (HP) was simulated
that half of the animals were female and the other half
male. Mating was performed during 50 generations using
mutation rate of 2.5*10−8 per site by drawing the parents
of an animal randomly from the animals of the previous
generation. The considered genome comprised five chro-
mosomes and each chromosome was set as 1 Morgan

length. Different marker densities were created for each
simulated data set. The number of SNPs per chromosome
ranged from 1000 to 2000 in various datasets. The Refer-
ence population generated from the HP by mating parent
groups. The parent groups were randomly selected from
the last generation of the HP. Fifty percent of male
offspring selected randomly from each group and were
used as sires for the next generation. Also fifty percent of
female offspring selected randomly as dams to produce
the next generation and the mating scheme continued for
50 generations. The founder population randomly selected
and the haplotypes of offspring generated them. Samples
of 100 parent-offspring trios produced. Each sample was
sequenced at depth of 5 k and 10 k. The sample size of
the second set of simulations consisted 500 trios. Four
different datasets of 100 trios with 5 k SNPs (G1), 100
trios with 10 k SNPs (G2), 500 trios with 5 k SNPs (G3),
and 500 trio with 10 k SNPs (G4) were simulated. Bi-
allelic SNPs were defined on each of homologous chromo-
somes and used “0” and “1” to denote the two alleles at
each SNP site. The allele with high frequency was defined
as ‘0’, and allele with low frequency as ‘1’ and an unknown
value as ‘NaN’. Both parents genotyped for all SNPs, and
offspring were genotyped for some of SNPs (low-density)
(Fig. 1). For each of G1-G4 datasets five versions: NA10,
NA30, NA50, NA70 and NA 90 were created with differ-
ent levels of simulated missing data (10, 30, 50, 70 and
90 % of offspring genotypes). A total of 30 replicates of
each simulated dataset were created.

Imputation accuracy and running time
For each of the methods, the imputation accuracy per un-
typed SNPs were calculated as the correlation between
imputed and observed SNPs, then mean of imputation
accuracy were calculated across the 5 replicates. Compu-
tation time were measured based on running each pro-
gram in second on a windows server with 32 core CPU
Intel, GPU: 192 CUDA Core and a total of 64 GB RAM
by Profiler function in MATLAB.

Assessment of factors affecting imputation
accuracy
The SNP Density and sample size were considered as
factors that could impact the imputation accuracy. For
each dataset-imputation method combination, imputation
accuracy were averaged across dataset versions NA10,
NA30, NA50, NA70 and NA90 and referred as imputation
accuracy. To assess the effect of the sample size on
imputation accuracy, two groups of 100 and 500 parent-
offspring trios were included the variation in SNP density.
For both groups embedded simulated SNPs with two
levels of 5 k and 10 K SNP panels and compared imput-
ation accuracy based on trios sample size. The impact of
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each of these factors were assessed for each imputation
method.

Imputation methods
SNP window
All the imputations in this study were done using
MATLAB version (R2014a) [15]. The SNP window is
defined by a fixed number of SNPs to the left and right
(L + R) of the un-typed SNP (except when the un-typed
SNP was near the end of a chromosome). A SNP window
of size L corresponds to L/2 SNPs to the left and L/2 SNPs
to the right of the un-typed SNP. In all imputation
methods, a SNP window of size L centered at marker i to
extend L markers left and right. For SNPs less than L
markers from the beginning or end of a chromosome, the
window extends L SNPs in one direction and to the
boundary of the chromosome in the other. The distance
defined in terms of the index of the SNP or the physical
position on the chromosome, or the genetic distance. A
distance measure fitted to the observed correlation matrix
between markers and selected the best window size of 22
(for 1 k) and 10 (for 5 k and 10 k) for the imputation by
scanning over a large range of windows. For all methods,

the genotype datasets included a matrix P with m individ-
uals and n SNP loci where the P (i, j) indicates the geno-
type of individuals at locus i. The target missing value is
defined as P (i, j) = NaN. The individuals were assumed to
have a known value at locus i, or otherwise it was ex-
cluded from the imputation but to be imputed in exactly
the same way as sample j. On the other hand every other
individuals had a known value at locus i, otherwise it was
excluded from the imputation but to be imputed in
exactly the same way as individuals j. In the imput-
ation methods only parent genotype values at nearby SNP
loci were used in the inference of P (i, j) in offspring.

Boosting methods
AdaBoost
The AdaBoost algorithm [16] is a well-known method to
build ensembles of classifiers with very good perform-
ance [16]. It has been shown empirically that AdaBoost
with decision trees has excellent performance, being
considered the best off-the-shelf classification algorithm
[16]. This algorithm takes training data and defines weak
classifier functions for each sample of training data. Clas-
sifier function takes the sample as argument and produces
value 0 or 1 in case of a binary classification task and a
constant value - weight factor for each classifier. Gener-
ally, AdaBoost has shown good performance at classifica-
tion. The sensitivity to noisy data and outliers is a weak
feature of AdaBoost. Let X be a set of imputed SNPs, and
y be a vector of observed (‘true’) SNP at an individual.
Define M= 100 to be the number of independent classi-
fiers (i.e. the imputation software). Given a training set of
N SNP, there are Z = [(x1, y1), …,(xi, yi), …,(xN, yN)], where
xi ∈X = (xi1, xi2, xi3|i = 1,2, …, N), yi ∈ y = (a1, a2), and a1,
a2 are the two alleles at a SNP locus, in question, for SNP
i in the training sample.
Initialize: each SNP was assigned with an equal

weight and

wi ¼ 1=N ; i ∈ 1; …; Nf g

Training: For m = 1, 2… M classifiers
Call classifier m, which in turn generates hypothesis

PW (i.e. inferred SNPs in the training set). Calculate the
error of PW:
Fit the class probability estimate
Pm(x) = Pw(y = 1|x) ∈ [0, 1], using weight wi on the

training data.

Set Hm ¼ 0:5 log 1−Pm xð Þ
Pm xð Þ

� �
∈ R

Update the weight distribution Wi for next classifier as
Set wi← wi exp(−wiHm(xi)) and renormalize to ∑iwi = 1
Testing: In the testing set, each Un-typed SNP is

classified via the so-called ‘weighted majority voting’.
Briefly, the wrapper program is

Fig. 1 Genotype imputation within a trio
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Output H xð Þ ¼ sign
Xm

m
Hm xð Þ

� �

Above, the algorithm maintains a weighted distribution
Wi of training samples xi, for i = 1, …,N, from which a
sequence of training data subsets Zm is chosen for each
consecutive classifier (package) m. Initially, the distribu-
tion of weights is uniform, meaning that all samples
contribute equally to the error rate. Next, the logit Hm of
the rate of correctly classified samples is calculated for
classifier m. A higher Hm is an indicator of better per-
formance. For instance, when Hm = 0.5, Hm takes the
value 0, and increases as Hm→ 0 [16].

LogitBoost
LogitBoost is a boosting algorithm that introduces a statis-
tical interpretation to AdaBoost algorithm by using addi-
tive logistic regression model for determining classifier in
each round [12]. Logistic regression is a way of describing
the relationship between one or more factors, in this case
instances from samples of training data, and an outcome,
expressed as a probability. In case of two classes, outcome
can take values 0 or 1. Probability of an outcome being 1
is expressed with logistic function. LogitBoost is a method
to minimize the logistic loss, AdaBoost technique driven
by probabilities optimization. This method requires care
to avoid numerical problems [12].

logitBoost algorithm for classification

1. Initialize the weights wi = 1/N, i∈ {1, …, N}
2. For m = 1 to M and while Hm ≠ 0

a) Compute the working response zi = yi − P(xi)/
P(xi)(1 − P(xi)) and weights wi ¼ P xið Þ 1−P xið Þð Þ

b) Fit Hm(x) by weighted least – squares of zi to yi
with weights wi

c) Set H(x) = H(x) + 0.5 Hm(x) and P(X) =
exp H xð Þð Þ

exp H xð Þð Þþ exp −H xð Þð Þ
3. Output H(x) = sign (∑m

mHm(x))

TotalBoost
General idea of Boosting algorithms, maintaining the dis-
tribution over a given set of examples, has been optimized.
A way to accomplish optimization for TotalBoost is to
modify the way measuring the hypothesis goodness, (edge)
is being constrained through iterations. AdaBoost con-
strains the edge with the respect to the last hypothesis to
maximum zero. TotalBoost method is “totally corrective”,
constraining the edges of all previous hypotheses to max-
imal value that is properly adapted. It is proven that, with
adaptive edge maximal value, measurement of confidence
in prediction for a hypothesis weighting increases [12].
The Boosting Algorithms in this study were AdaBoost,

LogitBoost and TotalBoost which used the decision trees

as learner [12, 17]. The main tuning parameter, the
optimal number of iterations (or trees), determined and
then the fitensemble function of MATLAB selected and
set the number of decision trees to 100 for all boosting
methods.

Result and discussion
Imputation accuracies
The imputation accuracies in different datasets are
shown in Table 1 for ADA, LB and TOT. The accuracy
of Imputation was high for all Boosting methods. For all
data sets, imputation accuracies always decreased as the
level of missing data increased. In general TOT had the
lowest imputation accuracy compared to other Boosting
methods. The results indicate that LB had the highest
accuracy. A possible reason that TotalBoost was less
accurate than other methods is that the datasets that
used in the experiment may have violated multivariate

Table 1 Mean of imputation accuracy for Boosting methods in
various versions on the four different datasets

Data set Density Sample size Version AB LB TB

5 k 100 NA10 0.9843 0.9954 0.9611

5 k 100 NA30 0.9883 0.9947 0.9638

G1 5 k 100 NA50 0.9822 0.9909 0.9621

5 k 100 NA70 0.9777 0.9829 0.9583

5 k 100 NA90 0.9211 0.9303 0.9246

Mean 0.9707 0.9788 0.9539

10 k 100 NA10 0.9861 0.9981 0.9702

10 k 100 NA30 0.9886 0.9978 0.9697

G2 10 k 100 NA50 0.9912 0.9970 0.9679

10 k 100 NA70 0.9898 0.9939 0.9647

10 k 100 NA90 0.9653 0.9714 0.9523

Mean 0.9842 0.9916 0.9649

5 k 500 NA10 0.9859 0.9967 0.9650

5 k 500 NA30 0.9885 0.9952 0.9650

G3 5 k 500 NA50 0.9877 0.9926 0.9638

5 k 500 NA70 0.9800 0.9848 0.9618

5 k 500 NA90 0.9288 0.9383 0.9362

Mean 0.9741 0.9815 0.9583

10 k 500 NA10 0.9787 0.9983 0.9706

10 k 500 NA30 0.9799 0.9977 0.9692

G4 10 k 500 NA50 0.9830 0.9967 0.9665

10 k 500 NA70 0.9877 0.9959 0.9634

10 k 500 NA90 0.9706 0.9767 0.9552

Mean 0.9799 0.9930 0.9649

NA10: 10 % of genotype is missing per offspring, NA30: 30 % of genotype
is missing per offspring, NA50: 50 % of genotype is missing per offspring,
NA70: 70 % of genotype is missing per offspring, NA90: 90 % of genotype is
missing per offspring, Bold: Mean of different versions in each dataset
AB AdaBoost, LB LogitBoost, TB TotalBoost

Mikhchi et al. Journal of Animal Science and Technology  (2016) 58:1 Page 4 of 6



normality. In addition, increasing the total number of trees
can improve boosting ability to impute the un-typed SNP.
Nevertheless other reason that affect the decrease of accur-
acy may be due to total number of trees that we used in the
experiment. It was found that LogitBoost had higher accur-
acy than AdaBoost and TotalBoost algorithms because of
LogitBoost was less sensitive to outliers and unlike Ada-
Boost, which uses an exponential function, LogitBoost uses
the binomial log likelihood, which increases linearly rather
than exponentially for strong negative margins. Because of
this, LogitBoost is more robust than AdaBoost when data
are noisy or samples are mislabelled [11]. However, Logit-
Boost can give better performance than AdaBoost and
TotalBoost to impute the un-typed SNP. The imputation
accuracy obtained of this research is not comparable with
the other studies. Because in each study different popula-
tion structure, levels of missing data and levels of LD be-
tween markers are assumed [18].

SNP density
The accuracy of imputation increased with the number
of SNPs for all Boosting methods examined. The imput-
ation accuracy was lower for all levels of 5 K SNP panel
compared to 10 k panels. Increasing the SNP density
increased imputation accuracy for two sample size of
trio (100 and 500), especially from 5 k to 10 k. There
was a large increase in the imputation accuracy when
using 10 k SNP panels. As a general trend, mean of
imputation accuracy increased with increasing SNPs
density and increasing sizes of trios (Fig. 2). It seems
that imputation accuracy in all methods more influ-
enced by the SNP density than sample size. Similar to
the current results, Weigel et al. [19] reported mean
imputation accuracy from 80 to 95 % when animals were
genotyped with a medium-density panel (2000–4000
SNPs); less than 80 % when animals were genotyped for
1000 SNPs or less, and greater than 95 % when animals
were genotyped for more than 8000 SNPs. All Boosting

methods had better performance on the high density
dataset (10 k). We believe this is reasonable since a higher
density provides more neighboring SNPs, and conse-
quently greater linkage disequilibrium, for imputation
purpose [20].

Sample size
The accuracy of imputation increases for all methods under
the condition of low SNP density (5 k), as the number of
trios increase. The results show that under the condition of
high SNP density (10 k), accuracy of imputation increased
for LB and TB as the number of trios increased. The imput-
ation accuracy for AdaBoost (AB) in 10 K SNP panel was
slightly lower. It seems that AdaBoost is suitable for imput-
ation of un-typed SNP in small sample size. However, the
effect of the sample size on imputation accuracy is less than
effect of SNP density on imputation accuracy. The results
show that the sample size of the trios is a substantial impact
on imputation accuracy. We have demonstrated with G3
and G4 datasets that the use of 500 trios produced substan-
tial gain in imputation accuracy and improved imputation
accuracy for LB and TB. The larger sample size will pro-
duce more consistent estimates of measured parameters,
resulting in improved imputation accuracy for various
methods [21]. The performance of any classification de-
pends on sample size, which may be especially so for
present methods, since the number of parameters to be es-
timated is large and low sample size may lead to unstable
results [22]. It was found that larger trios (i.e. 500) could
help to better performance of LB and TB and could be suit-
able for imputation of un-typed SNPs [23]. The LB and TB
showed the large changes with increasing the number of
trios. It is concluded that these methods are suitable for im-
putation of un-typed SNP in large sample.

Computation of time
The detailed runtime of the all three methods on four data-
sets at missing rate of 90 % (NA90) presented in Table 2.

Fig. 2 The effect of the sample size and SNP density on imputation accuracy
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For all data sets, the AB was the fastest algorithm and LB
was next fastest. The TB was always the slowest and needed
more time to impute a dataset. An important factor in
evaluating machine learning algorithms is how quickly
their runtime increases with sample size of dataset. As
number of trios grow, the speed of all eight methods
needed some more time to impute a dataset, especially for
large SNP panel. AdaBoost required less computer time
than the other boosting methods, which may be an advan-
tage among boosting methods when using large data sets
with several thousand markers. The TotalBoost algorithm
seemed to be too time-consuming in large data sets and it
has lowest imputation accuracy than other methods. The
computing time changed with increasing the sample sizes.
Increase of sample size from 100 to 500 resulted, the com-
puting time of all methods increased.

Conclusion
In this study we compared the performance of three
Boosting methods based imputation of parent-offspring
trios in terms of imputation accuracy, computation time
and factors affecting imputation accuracy. Simulation of
datasets showed the methods performed well for imput-
ation of un-typed SNPs. The LB had the highest accuracy
of the three imputation methods examined. Accuracy of
imputation increased with the increase of the number of
SNPs and trios. The 10 K SNP panels can be imputed with
high accuracies than 5 k SNP panels. In terms of imput-
ation time, AB outperformed LB and TB. The LB and TB
methods are suitable for imputation of un-typed SNP in
large samples. The results indicated that the methods are
suitable in terms of imputation accuracy and denser chip
is recommended for imputation of parent-offspring trios.
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