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Abstract
Recently, the cattle genome sequence has been completed, followed by developing a com-
mercial single nucleotide polymorphism (SNP) chip panel in the animal genome industry. In 
order to increase statistical power for detecting quantitative trait locus (QTL), a number of ani-
mals should be genotyped. However, a high-density chip for many animals would be increas-
ing the genotyping cost. Therefore, statistical inference of genotype imputation (low-density 
chip to high-density) will be useful in the animal industry. The purpose of this study is to inves-
tigate the effect of the reference population size and marker density on the imputation accu-
racy and to suggest the appropriate number of reference population sets for the imputation in 
Hanwoo cattle. A total of 3,821 Hanwoo cattle were divided into reference and validation pop-
ulations. The reference sets consisted of 50k (38,916) marker data and different population 
sizes (500, 1,000, 1,500, 2,000, and 3,600). The validation sets consisted of four validation 
sets (Total 889) and the different marker density (5k [5,000], 10k [10,000], and 15k [15,000]). 
The accuracy of imputation was calculated by direct comparison of the true genotype and the 
imputed genotype. In conclusion, when the lowest marker density (5k) was used in the valida-
tion set, according to the reference population size, the imputation accuracy was 0.793 to 0.929. 
On the other hand, when the highest marker density (15k), according to the reference popula-
tion size, the imputation accuracy was 0.904 to 0.967. Moreover, the reference population size 
should be more than 1,000 to obtain at least 88% imputation accuracy in Hanwoo cattle.
Keywords: Single nucleotide polymorphism (SNP), Imputation, Hanwoo cattle, Reference
 population size, Marker density

INTRODUCTION
The complete cattle genome has been sequenced, and Illumina (San Diego, CA, USA) and Affymetrix 
(Santa Clara, CA, USA) have developed commercial single nucleotide polymorphism (SNP) chips that 
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use chip-based array technology [1]. The development of SNP panels has enabled many studies, 
such as genome-wide association studies (GWAS) and best linear unbiased prediction (BLUP) 
studies [2]. Many genetic markers associated with objective breeding traits have been identified for 
marker-assisted selection [3]. Using a high-density SNP panel in a GWAS increases the probability 
of finding quantitative trait locus regions [4]. Improved high-density SNP panels also increase the 
accuracy of genomic breeding value estimations using genomic BLUP [5–8].

However, it is very difficult to genotype all animals in a population because of the cost of high-
density chips. In addition, SNP panels for different platforms, which may differ in density or chip 
data versions, are not completely compatible. Imputation methods for converting from low- to 
high-density data are an alternative [9].

Genotype imputation refers to statistical inference of genotype and includes family and 
population-based methods. Family based methods require sufficient pedigree information to 
compare reference and test groups, so are difficult to apply when there is no pedigree information 
or insufficient pedigree depth [10,11]. Population-based methods predict low-density genotypes 
of animals by referring to a reference population genotyped at high density. This method uses a 
library and haplotype clustering to find the most appropriate haplotype and genotype [12–15]. 
Many factors affect the imputation accuracy of this method, including the reference population size, 
relationship between animals in the reference and test populations, minor allele frequency of the 
SNP to be imputed, proportion of missing genotypes on the low- and high-density panels, marker 
density, population structure, and the level of linkage disequilibrium (LD) [16]. Generally, family 
based methods aim to identify the animals to be sequenced, while population-based methods aim at 
imputation of the genotypes of unrelated individuals. Many studies have examined ways to increase 
imputation accuracy using population-based imputation software, such as fastPHASE [17], Beagle 
[18], Minimac [19], and findhap.f90 [20]. However, no studies have examined imputation accuracy 
in Hanwoo cattle according to the reference population size and marker density. Hanwoo cattle is a 
native taurine cattle breed in Korea and has been bred as a draft animal since 5,000 years ago. Over 
time, Hanwoo cattle have been bred for meat production and have become very popular despite 
high prices due to marbling fat, softness, juiciness, and unique flavor. [21]

Therefore, this study investigated the efficacy of genotyping by imputation of a high-density 
chip from a low-density one, according to the reference population size and marker density, and 
proposes an appropriate reference population size for high-quality imputation in Hanwoo cattle.

MATERIALS AND METHODS
Genotypes data
All the data-set (50K genotypes) used in this study was provided from the previous Research 
Project (BioGreen21, Hanwoo Research Institutes of National Institute of Animal Science, RDA) 
and current research project (Bridge Project of NIAS, RDA). To investigated imputation accuracy, 
the 3,821 animals were randomly selected from the population.

Quality control
Genotype data was modified using GenomeStudio (Illumina) ver. 2.0 software with a genotyping 
module to fit the analysis software format: Illumina data file (.bsc) to genotype file format (.ped). 
We removed SNPs in unknown chromosomes and sex chromosomes for the next steps. The 
quality control procedure was performed using plink1.9 software [22]. The raw data has a 95.55% 
genotyping rate, so missing genotype data phasing was performed as a pre-imputation task for the 
imputation accuracy as a reference population. SNP data were subjected to strict quality control to 
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minimize the impact of the imputation accuracy on genotyping error: minor allele frequency (0.01), 
genotyping call rate (0.9), missing individuals (0.1), Hardy-Weinberg equilibrium test p-value 
(0.0001). After quality control, a total of 38,933 SNPs were used for analysis. the number of SNPs 
on each chromosome before and after quality control is described in Table 1.

Imputation scenarios
Imputation scenarios are set based on population size and marker density. The population size 
controls the size of the reference population, and the marker density controls the maker density of 
the test population. The test population was selected by the lowest birth year belonging to the data 
set. Thus, the test population consists of 889 animals, and these were divided into four validation 
sets. In the reference population, five reference populations were constructed. First, 500, 1,000, 

Table 1. Number of SNPs on each chromosomes between before and after in quality control

Chromosome
Before QC After QC Removed 

No. SNPNo. SNP No. SNP
1 3,133 2,567 566 

2 2,553 2,037 516 

3 2,279 1,905 374 

4 2,357 1,901 456 

5 2,050 1,611 439 

6 2,373 1,980 393 

7 2,141 1,725 416 

8 2,181 1,786 395 

9 1,899 1,541 358 

10 1,977 1,618 359 

11 2,058 1,666 392 

12 1,599 1,280 319 

13 1,666 1,370 296 

14 1,687 1,386 301 

15 1,583 1,255 328 

16 1,542 1,222 320 

17 1,442 1,189 253 

18 1,249 1,001 248 

19 1,274 1,047 227 

20 1,408 1,144 264 

21 1,313 1,048 265 

22 1,194 957 237 

23 976 817 159 

24 1,209 990 219 

25 905 747 158 

26 1,012 810 202 

27 895 727 168 

28 889 730 159 

29 966 796 170 

30 1,044 80 964 

Total 48,854 38,933 9,921 
SNP, single nucleotide polymorphism; QC, quality control.
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1,500, and 2,000 animals are selected based on the individuals not included in the test population. 
In addition, 2,000 animals and the remaining test populations not included in each validation were 
included as reference groups to constitute over 2,000 (3,600) reference groups. When increasing 
the number of reference populations, the first 500 animals were randomly selected from the data 
set using the R program ver 3.6 [23], and another 500 animals were added from the remaining 
individuals. Thus, each scenario set is described in Table 2. and Fig. 1. In addition, three low-density 
SNP panels are created to use for validation marker density. Each SNP panel selected evenly spaced 
5k, 10k, and 15k from a 50k Illumina chip, and the number and average distance of SNPs for each 
chromosome of these panels are described in Table 3. The test population data were analyzed using 
the generated low-density SNP panel information. A schematic diagram of the imputation scenario 
is illustrated in Fig. 2.

Linkage disequilibrium
We analyzed the LD level, which is one of the factors affecting imputation accuracy. Because 
imputation uses haplotype information, imputation accuracy will decrease if the LD levels of the 
reference population and test population LD levels are different. LD value (r2) between SNPs 
within 1Mb distance was measured using plink1.9 software. This means that the maximum distance 
between the markers is 1Mb, and the average r2 value is estimated for each autosomal chromosome. 
The following formula is used for LD estimation [24]. 

Table 2. Summary of imputation scenarios using different reference population size and validation data set

Scenario 
set

Reference 
SNP data

Reference set
Test set

Total 
animalValidation 1 Validation 2 Validation 3 Validation 4

N % N % N % N % N %
Ref 500 50k 500 0.69 222 0.31 223 0.31 223 0.31 221 0.31 721–723

Ref 1,000 50k 1,000 0.82 222 0.18 223 0.18 223 0.18 221 0.18 1,221–1,223

Ref 1,500 50k 1,500 0.87 222 0.13 223 0.13 223 0.13 221 0.13 1,721–1,723

Ref 2,000 50k 2,000 0.90 222 0.10 223 0.10 223 0.10 221 0.10 2,221–2,223

Ref 2,000+ 50k 3,600 0.94 222 0.06 223 0.06 223 0.06 221 0.06 3,821
Total animal, The total number of the reference population and validation animals; Ref, reference population; SNP, single nucleotide polymorphism.

Fig. 1. Organizing or analyzing data. The raw data consisted of a total of 3,821 individuals born between 1989 and 2013. First, the youngest individuals in 
the dataset were selected as the validation set. Then, the others were configured as a reference group. The reference group was constructed by changing the 
group size and the validation group by changing the number of markers. Val, validation.
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Where, A1, A2, B1, and B2 are the alleles of SNP A and SNP B, and PA1, P A2, P B1, and P B2 are the 
corresponding allele frequencies. P A1B1 is the haplotype frequency of A1B1. The average LD levels 
of the reference and test populations used in all scenarios were analyzed whether they showed a 
similar pattern according to the SNPs’ distance. Also, the LD pattern was investigated in the test 
population according to the marker density (5k, 10k, 15k, and 50k).

Genotype imputation
Imputation of low-density (5k, 10k, 15k) data set to high-density (50k) genotypes was performed 
with the beagle program ver. 3.3 [25]. The beagle program, which is a population-based method, 
does not require pedigree information. The beagle program clusters haplotypes in each marker using 

Table 3. Each chromosome information about the number of SNP and average distance according to marker density

Chr Length
(Mb)

5k 10k 15k 50k

No. SNP Average 
distance (kb) No. SNP Average 

distance (kb) No. SNP Average 
distance (Kb) No. SNP Average 

distance (kb)
1 158.1 330 0.48 660 0.24 990 0.16 2,567 0.06

2 136.7 262 0.52 524 0.26 786 0.17 2,037 0.07

3 121.1 245 0.49 490 0.25 735 0.16 1,905 0.06

4 120.5 245 0.49 490 0.24 735 0.16 1,901 0.06

5 121.1 208 0.58 415 0.29 623 0.19 1,611 0.08

6 119.0 256 0.46 512 0.23 768 0.15 1,980 0.06

7 112.4 222 0.50 444 0.25 666 0.17 1,725 0.07

8 113.0 230 0.49 460 0.24 689 0.16 1,786 0.06

9 105.0 198 0.52 396 0.26 594 0.17 1,541 0.07

10 103.1 208 0.49 416 0.25 624 0.16 1,618 0.06

11 107.1 214 0.50 428 0.25 643 0.17 1,666 0.06

12 90.9 164 0.55 328 0.28 493 0.18 1,280 0.07

13 83.9 176 0.48 352 0.24 528 0.16 1,370 0.06

14 83.1 178 0.47 356 0.23 534 0.16 1,386 0.06

15 84.2 162 0.52 324 0.26 485 0.17 1,255 0.07

16 81.2 158 0.51 316 0.25 473 0.17 1,222 0.07

17 74.8 153 0.49 306 0.24 459 0.16 1,189 0.06

18 65.2 128 0.51 256 0.25 384 0.17 1,001 0.07

19 63.5 135 0.46 270 0.23 405 0.15 1,047 0.06

20 71.5 147 0.48 294 0.24 442 0.16 1,144 0.06

21 71.1 136 0.51 272 0.26 407 0.17 1,048 0.07

22 61.1 124 0.49 248 0.24 371 0.16 957 0.06

23 52.2 105 0.50 210 0.25 315 0.17 817 0.06

24 62.1 127 0.49 254 0.24 381 0.16 990 0.06

25 42.7 96 0.44 192 0.22 288 0.15 747 0.06

26 51.0 104 0.49 208 0.24 312 0.16 810 0.06

27 45.3 94 0.48 188 0.24 282 0.16 727 0.06

28 46.2 94 0.49 188 0.25 281 0.16 730 0.06

29 51.1 103 0.48 206 0.24 309 0.16 796 0.06
SNP, single nucleotide polymorphism.

( )2
1 1 1 12

1 2 1 2

A B A B

A A B B

p p p
r

p p p p
−

=



https://doi.org/10.5187/jast.2021.e117 https://www.ejast.org  |  1237

Lee et al.

a localized haplotype cluster model and then uses the Hidden Markov Model (HMM) to find the 
most probable haplotype based on the known genotype of each individual [26]. Therefore, collecting 
haplotype information and imputing un-genotyped SNP in the reference population is important 
for imputing validation data from low-density to high-density. The imputation was performed 
for each chromosome by pairing the reference data set and the validation data set in all scenarios. 
After imputation, the genotype was recorded for accuracy comparison, the AA, AB, and BB types 
were changed to 0, 1, and 2, respectively. The ratio was used as the imputation accuracy by direct 
genotype comparison of raw genotype and imputed genotypes. In addition, how the imputation 
accuracy changes are checked according to the minor allele frequency, reference population size, and 
marker density.

RESULTS
Linkage disequilibrium
We investigated the LD pattern of all of our scenario sets (Fig. 3). Fig. 3A shows the LD pattern 
of the four validation sets according to marker density (5k, 10k, and 15k). In all validation sets, 
the overall LD estimation results showed very similar tendency; the level of LD decreases as the 
distance to the SNP increases. In each validation set, the LD pattern also differed slightly with 
the marker density, but the difference was less than 0.01. As there was no difference among the 
validation sets, the data were free from bias. Fig. 3B shows the LD pattern of the reference sets 
according to population size. The LD levels of the reference sets used in all scenarios were similar 
when the reference population size was 500, 1,000, 1,500, 2,000, or 3,600. Because the population 
size is larger than the validation set, the LD level does not change as the population size changes 
relative to the reference population. In addition, the LD level difference among the reference groups 
was smaller than the LD level difference among the validation sets. Comparing the validation set 
with the reference population set showed that the LD levels have similar patterns. In particular, the 
distance between SNPs can be divided into 0–20, 20–50, 50–100, 100–200, 200–500, 500–1,000 
kb. Table 4 gives the number of SNP pairs in the reference and validation sets, and the average 
r-square (r2) values and deviations. As the distance between SNPs increased, the number of SNP 
pairs gradually increased; there were 750 pairs at 0–20 kb and 500,000 at 200–1,000 kb. The r2 value 
was 0.28 (0.32) at 0–20 kb and 0.02 (0.04) at 200–1,000 kb; it decreased rapidly up to the first 200 

Fig. 2. Imputation scenarios. This figure shows reference population1 and validation1 as examples, and 
imputation was performed on each marker density (5k, 10k, and 15k). Since the reference data set consists of 5 
groups, and the test set consists of 4 validation groups, the imputation process ran 60 times. Ref, reference Val, 
validation.
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kb, and decreased slowly thereafter.

Imputation accuracy
We assessed the genotype imputation accuracy according to the SNP panel density and reference 
population size. The average of the four validation sets represents the accuracy of each scenario. The 
lowest imputation accuracy was 79% with 5k marker density and a reference population of 500, 
and the highest accuracy was 97% with 15k marker density and a reference population over 2,000 
(3,600). When we assessed the accuracy of each validation set, the maximum difference among the 
sets was about 4%, when the reference population size was 1,000 and the marker density 5k. The 
other scenarios had similar imputation accuracies. Fig. 4 plots the accuracy according to the marker 
density of each chromosome for a reference population of 1,500 (The imputation accuracies for 

Fig. 3. The interval means linkage disequilibrium (r2) value between marker pairs about the marker distance according to the test set (A) and 
reference set (B). (A) Total four validation data sets have different marker density consisted of 5k, 10k, 15k, and 50k for imputation. (B) Total five reference data 
sets consisted of 500, 1,000, 1,500, 2,000, and over 2,000 (3,600). In addition, over 2,000 reference data include other validation data also into reference data.

A B

Table 4. Linkage disequilibrium (r2) information in all scenario data sets

Data type
0–20 kb interval 20–50 kb interval 50–100 kb interval 100–200 kb interval 200–1,000 kb interval

No. SNP 
pair

Average r2 
(SD)

No. SNP 
pair

Average r2 
(SD)

No. SNP 
pair

Average r2 
(SD)

No. SNP 
pair

Average r2 
(SD)

No. SNP 
pair

Average r2 
(SD)

Val 1 750 0.28 (0.33) 22,732 0.17 (0.25) 33,014 0.10 (0.17) 64,732 0.06 (0.11) 500,518 0.02 (0.04)

Val 2 751 0.28 (0.33) 22,722 0.17 (0.25) 33,002 0.10 (0.17) 64,713 0.06 (0.11) 500,429 0.02 (0.04)

Val 3 751 0.28 (0.33) 22,731 0.17 (0.25) 33,010 0.10 (0.17) 64,732 0.06 (0.11) 500,464 0.02 (0.04)

Val 4 752 0.28 (0.33) 22,727 0.17 (0.25) 33,006 0.10 (0.17) 64,704 0.06 (0.11) 500,397 0.02 (0.04)

Ref 500 744 0.27 (0.32) 22,572 0.17 (0.24) 32,793 0.09 (0.16) 64,243 0.05 (0.10) 496,752 0.02 (0.04)

Ref 1,000 749 0.27 (0.32) 22,604 0.17 (0.24) 32,814 0.09 (0.16) 64,299 0.05 (0.10) 497,219 0.02 (0.04)

Ref 1,500 749 0.27 (0.32) 22,618 0.17 (0.24) 32,827 0.09 (0.16) 64,374 0.05 (0.10) 497,641 0.02 (0.04)

Ref 2,000 750 0.27 (0.32) 22,646 0.17 (0.24) 32,877 0.09 (0.16) 64,488 0.05 (0.10) 498,467 0.02 (0.04)

Ref 2,000 + (val 1) 752 0.27 (0.32) 22,739 0.17 (0.24) 33,025 0.09 (0.16) 64,758 0.05 (0.10) 500,701 0.02 (0.04)

Ref 2,000 + (val 2) 752 0.27 (0.32) 22,739 0.17 (0.24) 33,025 0.09 (0.16) 64,758 0.05 (0.10) 500,701 0.02 (0.04)

Ref 2,000 + (val 3) 752 0.27 (0.32) 22,739 0.17 (0.24) 33,025 0.09 (0.16) 64,758 0.05 (0.10) 500,701 0.02 (0.04)

Ref 2,000 + (val 4) 752 0.27 (0.32) 22,739 0.17 (0.24) 33,025 0.09 (0.16) 64,758 0.05 (0.10) 500,701 0.02 (0.04)
SNP, single nucleotide polymorphism; Val, validation, Ref, reference population.
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each chromosome for reference population sizes 500, 10,00, 2,000, and over 2,000 are presented 
in Figs. 5–8); chromosome 21 show maximum variability in imputation accuracy. Fig. 9 plots the 
misplaced SNPs on the entire autosomal segment with markers of 5k (A), 10k (B), and 15k (C) 
from above and confirms the presence of several regions with poor imputation quality. Based on 
0.75 as a threshold, 1275 SNPs were identified as substandard at 5k, 151 SNPs at 10k, and 65 
SNPs were identified as substandard at 15k.

Imputation accuracy by marker density
This study investigated the effect of marker density on imputation accuracy. Three low-density 
(5k, 10k, and 15k) datasets were used as marker data for validation and imputed to high-density 
(50k; 38,933). In the 5k marker dataset, the imputation accuracy was 0.793–0.929, with a 13.6% 

Fig. 4. Average imputation accuracy of each chromosome different marker density in reference 
population size 1,500. The average accuracy of each chromosome is indicated by a different color depending 
on the marker density of the test data set, which is 5k, 10k, 15k represented to green, yellow, and red, 
respectively.

Fig. 5. Average imputation accuracy of each chromosome different marker density in reference 
population size 500. The average accuracy of each chromosome is indicated by a different color depending on 
the marker density of the test data set, which is 5k, 10k, 15k represented to green, yellow, and red, respectively.
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Fig. 6. Average imputation accuracy of each chromosome different marker density in reference population 
size 1,000. The average accuracy of each chromosome is indicated by a different color depending on the marker 
density of the test data set, which is 5k, 10k, 15k represented to green, yellow, and red, respectively.

Fig. 7. Average imputation accuracy of each chromosome different marker density in reference population 
size 2,000. The average accuracy of each chromosome is indicated by a different color depending on the marker 
density of the test data set, which is 5k, 10k, 15k represented to green, yellow, and red, respectively.

Fig. 8. Average imputation accuracy of each chromosome different marker density in reference population 
size over 2,000. The average accuracy of each chromosome is indicated by a different color depending on the 
marker density of the test data set, which is 5k, 10k, 15k represented to green, yellow, and red, respectively.
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accuracy difference according to the reference population size. In comparison, in the 15k marker 
dataset, the imputation accuracy was 0.904–0.967, with a 6.3% accuracy difference according to 
the reference population size (Table 5). This shows that the higher the density of the validation 
set, the greater the imputation accuracy; moreover, the imputation accuracy difference according 
to reference population size is much greater at low than high density. The difference in imputation 
accuracy between 5k and 10k is also more significant than that between 10k and 15k. The efficiency 
of imputation increased with marker density in the validation set. Imputation took a comparatively 
long time when the marker density of the validation set was low. Time costs are not shown in this 
study.

Imputation accuracy by reference population size
Five reference populations were examined: 500, 1,000, 1,500, 2,000, and 3,600. When selecting the 
animals for the reference population, we used random sampling based on birth year; the relatedness 
of the animals was not considered. Fig. 10 plots the average imputation accuracy according to 
reference population size and test data marker density. For the smallest reference population (n = 
500), the imputation accuracy was 0.793–0.906, differing by 11.3% according to marker density. For 
the largest reference population (3,600), the imputation accuracy was 0.929–0.969, differing by 4% 
according to marker density (Table 5). These results show that the larger the reference population, 
the higher the imputation accuracy. Moreover, the difference in imputation accuracy according to 

Fig. 9. Average imputation accuracy of each SNPs different marker density in reference population size 1,500. We did genome-wide plotting for each 
SNP imputation accuracy to find a region where the low imputation efficiency. Each chromosome has a different color, and the inferior area exists at the end of 
the chromosome. As the marker density increases; (A) 5k, (B) 10k and (C) 15k from above, the overall imputation accuracy also increases. 1,275 SNPs were 
identified as substandard at 5k, 151 SNPs at 10k, and 65 SNPs were identified as substandard at 15k. Brown horizontal threshold set to 0.75. SNP, single 
nucleotide polymorphism.
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marker density is much more significant with small reference populations. When the reference 
population in Hanwoo cattle exceeds 1,000, the average imputation accuracy exceeds 88%, even 
using 5 k SNP data (Fig. 10). The imputation efficiency increased with reference population size, 
and imputation took longer if the reference population was small. 

Table 5. Average imputation accuracy of validation data sets
Density No. Ref Val 1 Val 2 Val 3 Val 4 Average SD

5k 500 0.796 0.789 0.797 0.792 0.793 0.004

1,000 0.862 0.938 0.862 0.861 0.881 0.038

1,500 0.886 0.883 0.888 0.886 0.886 0.002

2,000 0.899 0.897 0.902 0.9 0.9 0.002

2,000+ 0.929 0.926 0.931 0.929 0.929 0.002

10k 500 0.864 0.859 0.864 0.861 0.862 0.002

1,000 0.909 0.907 0.911 0.91 0.909 0.002

1,500 0.927 0.924 0.928 0.927 0.926 0.001

2,000 0.936 0.934 0.938 0.937 0.936 0.002

2,000+ 0.955 0.953 0.956 0.955 0.955 0.001

15k 500 0.907 0.904 0.908 0.906 0.906 0.002

1,000 0.938 0.936 0.939 0.938 0.937 0.001

1,500 0.949 0.948 0.951 0.95 0.949 0.001

2,000 0.955 0.954 0.957 0.956 0.956 0.001

2,000+ 0.969 0.967 0.969 0.969 0.969 0.001
Ref, reference Val, validation.

Fig. 10. The Average accuracy of imputation according to reference population size and validation 
data marker density. The validations average imputation accuracy was calculated according to the reference 
population size, which was displayed according to the density of each marker density. Gray, yellow, and blue 
represent 5k, 10k, and 15k, respectively.
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Imputation accuracy by minor allele frequency
To investigate the effect of minor allele frequency, which affects imputation accuracy, the minor 
allele frequency of all SNPs was increased from 0 to 0.5 in 0.005 increments, with 100 groups in 
all scenarios. The imputation accuracy of each minor allele group based on population size and 
marker density was compared. Fig. 11 shows the imputation accuracy in five reference populations 
with three different marker densities up to 50k, according to the minor allele frequencies. The 
imputation accuracy was negatively related to the minor allele frequency, confirming that the 
imputation accuracy decreased as the minor allele frequency increased. Using the 5k marker data 
in the validation set, the 0.005 and 0.5 groups had accuracies of 98.3%–99.4% and 69.4%–88.9%, 
respectively, depending on the size of the reference group, and the difference in accuracy was 
10.5%–28.9%. However, when the 15k marker data was used in the validation set, the 0.005 and 
0.5 groups had respective accuracies of 99.3%–99.7% and 85.2%–94.9%, varying depending on 
the reference population size, and a 4.7%–14.1% accuracy difference. Therefore, as the marker 
density or reference population size increases, the difference in imputation accuracy decreases, even 
if the frequency of minor alleles increases. There was a clear distinction among scenarios when 
the imputation accuracy threshold was 85%. If a 15k marker density was used in all scenarios, the 
accuracy exceeded the threshold value.

DISCUSSION
In this study, we use Hanwoo genotype dataset from BioGreen 21 data set of National Institute 

Fig. 11. The average accuracy of imputation according to marker density and minor allele frequency and reference population. The minor allele 
frequency was divided into 100 groups between 0 and 0.5 by 0.005, and then calculated the average accuracy of SNPs belonging to the group (A) 5k, (B) 10k 
and (C) 15k. SNP, single nucleotide polymorphism.
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of Animal Science, RDA, to generate scenario data for genotype imputation. The validation data 
were the data set of the youngest 889 animals; and these were divided into four validation sets. The 
others were used as a reference group to perform imputation using Beagle 3.3, a population-based 
method.

The imputation accuracy was examined by direct comparison between the true and imputed 
genotypes. We investigated LD in Hanwoo cattle because the population LD level affects the 
imputation accuracy. Uemeto et al. (2015) confirmed that Japanese black cattle had 0.1 LD (r2) 
when there was 200 kb between SNP pairs [27]. Using 16 Holstein breeds, Hoze et al. (2013) 
reported 0.2 LD (r2) when there was 100 kb between SNP pairs [28]. Thus, high LD means that 
the association between SNP markers is also high. This increases the probability of appropriate 
inference for closely located SNPs during imputation. Hanwoo cattle have a lower LD value than 
other cattle breeds and require a larger reference population to achieve high imputation accuracy.

Imputation accuracy of 95% in Japanese black cattle was obtained with reference populations 
greater than 400 [27]. In comparison, 90% imputation accuracy was obtained in Holstein cattle 
with reference populations greater than 300, and 95% imputation accuracy in Fleckvieh cattle with 
reference populations greater than 400 [29]. In Hanwoo cattle, the imputation accuracy was 88% at 
low-density (5k) for reference populations greater than 1,000, while it was the same as in Holsteins 
(where long chromosomes have greater imputation accuracy than short ones) [30].

Imputation accuracy is also influenced by the marker density of the validation data. In dairy 
cattle, the imputation accuracy of a reference population of 2,406 was 72%, 82%, 91%, 93%, and 
97% at marker densities of 384, 768, 1,536, 2,480, and 6,177, respectively [31]. In this study, 
comparing the results of three low-density panels (5k, 10k, and 15k), the accuracy differed by up 
to 13.6% according to the marker density. We need to assess imputation accuracy according to the 
reference population size because, as the population size increases, the haplotype data increase along 
with the explanatory power of each haplotype, and the imputation error rate decreases. We assessed 
imputation accuracy according to five reference population sizes, to determine the effect of reference 
population size on imputation accuracy in Hanwoo cattle. When the imputation was performed 
with a reference population over 2,000 (3,600), the accuracy was 93% at the lowest density (5k), 
which is lower than in other breeds.

The minor allele frequency also negatively affects the imputation accuracy. Because imputation 
imputes missing values through a statistical method, a correct genotype is accidentally introduced 
more often at a low minor allele frequency [27,32]. However, as the marker density or reference 
population size increases, the difference in imputation accuracy decreases, even if the frequency of 
minor alleles increases.

In conclusion, the imputation accuracy difference was 6.3%–13.6% among marker densities, 
varying depending on the reference population size, and 4%–11.3% among reference population 
sizes, varying according to marker density. In Hanwoo cattle, a reference population of at least 1,000 
is needed to obtain more than 88% imputation accuracy.
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