• 제목/요약/키워드: SM45C 강

검색결과 48건 처리시간 0.018초

AIP법에서 증착시간이 SM45C 강의 TiN 코팅층 성질에 미치는 영향 (Effect of Deposition Time on the Properties of TiN-coated Layer of SM45C Steel by Arc Ion Plating)

  • 김해지
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.44-50
    • /
    • 2011
  • The effect of deposition time in arc ion plating on surface properties of the TiN-coated SM45C steel is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured for various deposition times. It has been shown that the deposition time has a considerable effect on the micro-hardness, the coated thickness, and the atomic distribution of TiN of the SM45C steels but that it has little influence on the surface roughness and adhesion strength.

경량화 쇽업소바 피스톤로드에 사용되는 SM45C/SM20C-Pipe의 마찰용접에 관한 연구 (A Study on the Friction Welding of SM45C/SM20C-Pipe which Used in the Light Piston-Rod)

  • 민병훈;최수현;강정식;이형호;민택기
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.42-50
    • /
    • 2008
  • Various researches to reduce weight of a vehicle are achieving. One of these researches is tendencious to manufacture the hollow piston rod using friction welding instead of solid one of the vehicle shock absorber. This study deals with the friction welding of SM45C to SM20C-pipe that is used normally in the vehicle shock absorber. The friction time was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, upset pressure of 75MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests of friction weld were studied and so the results were as follows. When the friction time was l.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 837MPa, which is 113% of SM20C's tensile strength and 97% of SM45C's. The optimal welding conditions were n=2,000rpm, $P_1=55MPa$, $P_2=75MPa$, $t_1=1.5sec$, $t_2=2.0sec$ when the total upset length is 1.7mm.

경량화 피스톤 로드에 사용되는 SM45C/SM45C-Pipe의 마찰용접시 업셋압력이 미치는 영향 (Effect of Upset pressure on weldability in the Friction Welding of SM45C-Solid and SM45C-Pipe which is used in the Piston-Rod)

  • 민병훈;최원용;민택기
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.36-43
    • /
    • 2008
  • This research is tendencious to manufacture solid piston-rod of shock absorber as hollow piston-rod using friction welding. The SM45C has been welded to the SM45C-pipe in order to investigate the effect of upset pressure on friction weldability. The friction time and upset pressure was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied of friction weld, and so the results were as follows. When the upset pressure is sufficient, gets the high tensile strength. The optimal welding conditions were n=2,000rpm, $P_1$=55MPa, $P_2$=95MPa, $t_1$=1.5sec, $t_2$=2.0sec when the total upset length is 4.5mm.

선박엔진의 Supply Unit용 SNCM420H의 절삭특성 (Cutting Characteristic of SNCM420H steel for Ship Engine Supply Unit)

  • 최원식;성봉수;강창원;문희준;권주리
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.631-636
    • /
    • 2010
  • SNCM420 steel is one of the cam shaft materials which are used in the supply unit for ship engine cam shaft. In this study the assessment of cutting behavior was conducted for the SNCM 420 steel and SM45C steel with various cutting conditions as depth of cut 0.5, 1.0, 1.5, 2.0mm and feed rate 0.1~0.3m/rev. The controlled chip was produced in feed rate 0.2, depth of cut 1.0 for SNCM420 and feed rate 0.2, depth of cut 2.0 for SM45C. There is no difference cutting force between SM45C and SNCM420 steels.

SM45C 중실축의 마찰용접 기계적 특성에 관한 연구 (A Study on the Mechanical Properties of the Friction Welding with Solid Shaft of SM45C)

  • 구건섭
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.932-937
    • /
    • 2012
  • In the presented study, SM45C carbon steel parts were joined by friction welding. The welding process was carried out under optimized conditions using statistical approach. The study of SM45C is conducted with various combinations of process parameters. Parameter optimization, microstructure and mechanical property correlation are the major contribution of the study. The welded joints were produced by varying spindle revolution speed, friction pressure, upset pressure and burn-off length. Tension tests were applied to welded parts to obtain the strength of the joints. Fracturs properties were additionally obtained experimentally under fluctuated tensile loads. Microstructures using microphotographs were examined in the weld interface and weld region and heat affected zone and base metal and flash zone of welded parts. Finally, Hardness variations in welding zone and base metal were also obtained. Through these tests, the optimum conditions of parameters for ${\phi}20$ SM45C in friction welding were obtained when the friction spindle revolution was 1,950 rpm, the friction pressures was 30 MPs, upset pressures was 50 MPs.

SM45C의 중실축과 중공축의 마찰용접 특성에 관한 연구 (A Study on the Mechanical Properties of the Friction Welding with Hollow and Solid Shaft of SM45C)

  • 구건섭;최원용
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.841-846
    • /
    • 2010
  • The present study examined the mechanical properties of the friction welding with hollow and solid shaft of SM45, of which the diameter is 25.2mm and 33mm. Friction welding was conducted at welding conditions of 2,000rpm, friction pressure of 50MPa, upset pressure of 70MPa, friction time of 0.4sec to 1.4sec by increasing 0.2sec, upset time of 2.0 sec including variable such as friction time are following. Under these conditions, a tensile test, a hardness test and a microstructure of weld interface were studied. The results were as follows : When the friction time was 1.0 seconds under the conditions, the maximum tensile strength of the friction weld happened to be 1,094MPa, which is 120% compared with the tensile strength of SM45C base metal. The upset length linearly increased as friction time increased. According to the hardness test, the hardness distribution of the weld interface was formed from 475Hv to 739Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 2mm of SM45C.

CW Nd:YAG 레이저를 이용한 SM45C와 STS304의 이종금속용접 (Dissimilar Metal Welding of SM45C and STS304 by means of CW Nd:YAG Laser)

  • 신호준;유영태;임기건;안동규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1369-1375
    • /
    • 2004
  • For many years and primarily for economical reasons, Dissimilar Metal Welds have been used as transition joints in a variety of equipment and applications. But Dissimilar Metal Welds have several fabrication and metallurgical drawbacks that can often lead to in-service failures. For example, the most pronounced fabrication faults are hot cracks. Laser welding techniques have been characterised for various materials. In this paper, the laser weldability of STS304 stainless steel and SM45C at dissimilar metal welds using a continuous wave Nd:YAG laser are experimentally investigated. An experimental study was conducted to determine effects of welding parameters, on eliminating or reducing the extent welding zone formation at dissimilar metal welds and to optimize those parameters that have the most influence parameters such as focus length, power, beam speed, shielding gas, and wave length of laser were tested

  • PDF

강 봉(SM45C) 맞대기 용접부의 피로수명 평가 (Estimation of Fatigue Life in Butt-Welded Zone of SM45C Steel Rod)

  • 오병덕;이용복
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.45-50
    • /
    • 2008
  • SM45C steel rods being used generally for power transmission shafts and machine components was selected and welded by Butt-GMAW(Gas Metal Arc Welding) method. An estimation of fatigue life was studied by constructing S-N curve. Fatigue strength of base metal zone showed higher values than one of weld zone in low cycles between $10^4$ and $10^6$cycles. However, significant decrease in fatigue strength of base metal was found around $10^6$cycles, which were almost same as one of heat affected zone. This decrease was attributed that initial residual stress of the steel rods distributed by drawing process was diminished by continually applied load, and resulted in softening of base metal. The fatigue limit of the weld zone was highest in the boundary between deposited metal zone and heat affected zone, and followed by in the order of deposited metal zone, base metal zone, and heat affected zone. Based on these results, it is revealed that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected within the region of the lowest fatigue limit of heat affected zone.

CO2 레이저를 이용한 SM45C 강의 표면경화 (Surface Hardening of SM45C Steel by CO2 Laser)

  • 박진석;이오연;송기흥;한유희
    • 열처리공학회지
    • /
    • 제8권1호
    • /
    • pp.44-52
    • /
    • 1995
  • The specimen for laser hardening have been carried out using SM45C which is coated with black paint or graphite for better absorption. Segmented mirror was used in order to produce a square beam ($10{\times}10mm$) at the surface with a homegeneous intensity distribution across the beam. $CO_2$-Laser power was changed from 2kW to 4kW and transfer velocity was varied from 0.1m/min to 2.0m/min. The maximum hardness and case depth of SM45C steel are 790Hv and 1.5mm by laser hardening. When the surface of specimens was melted during laser hardening. the surface hardness of SM45C steel was decreased. The surface hardness of 2 layer coated specimen(black paint: $15.4{\mu}m$, graphite coating: $9.5{\mu}m$) was increased than that of 1 layer coated specimen. It is desirable to prepare 2 or more coating layer on the steel surface in order to sufficient case depth and hardness in laser hardening. The graphite coating on the specimen surface was obtained more uniform temperature distribution than black paint coating in laser hardening process.

  • PDF