• Title/Summary/Keyword: SINR

Search Result 256, Processing Time 0.023 seconds

Probabilistic Constrained Approach for Distributed Robust Beamforming Design in Cognitive Two-way Relay Networks

  • Chen, Xueyan;Guo, Li;Dong, Chao;Lin, Jiaru;Li, Xingwang;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2018
  • In this paper, we propose the distributed robust beamforming design scheme in cognitive two-way amplify-and-forward (AF) relay networks with imperfect channel state information (CSI). Assuming the CSI errors follow a complex Gaussian distribution, the objective of this paper is to design the robust beamformer which minimizes the total transmit power of the collaborative relays. This design will guarantee the outage probability of signal-to-interference-plus-noise ratio (SINR) beyond a target level at each secondary user (SU), and satisfies the outage probability of interference generated on the primary user (PU) above the predetermined maximum tolerable interference power. Due to the multiple CSI uncertainties in the two-way transmission, the probabilistic constrained optimization problem is intractable and difficult to obtain a closed-form solution. To deal with this, we reformulate the problem to the standard form through a series of matrix transformations. We then accomplish the problem by using the probabilistic approach based on two sorts of Bernstein-type inequalities and the worst-case approach based on S-Procedure. The simulation results indicate that the robust beamforming designs based on the probabilistic method and the worst-case method are both robust to the CSI errors. Meanwhile, the probabilistic method can provide higher feasibility rate and consumes less power.

Performance Analysis of Mobile Internet System in Inter-cell Interference Environment (인접 셀 간섭 환경에서 모바일 인터넷 시스템의 성능 분석)

  • Roh, Jae-Sung;Kim, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.96-102
    • /
    • 2012
  • The goal of mobile internet system is to provide a high-data-rate, low-latency and optimized packet radio access technology supporting flexible bandwidth deployments. Therefore, network architecture is designed with the goal to support packet-switched traffic with seamless mobility, quality of service and minimal latency. An important requirement for the mobile internet system is improved cell-edge BER performance and data throughput. This is to provide some level of service consistency in terms of geographical coverage as well as in terms of available data throughput within the communication coverage area. In a cellular system, however, the signal to interference plus noise power ratio gap between cell-center and cell-edge users can be of the order of 20 [dB]. The disparity can be even higher in a communication coverage limited cellular system. This leads to vastly lower data throughputs for the cell-edge users relative to cell-center users creating a large QoS gap. This paper proposes a analytical approach that tries to reduce inter-cell interference, and shows the SIR and BER performance according to the OFDM system parameters in mobile Internet environment.

Proposal of Optical CDMA Routing Scheme for Radio Access Network (무선 액세스 네트워크를 위한 광 CDMA 라우팅 방식의 제안)

  • Park, Sang-Jo;Kang, Koo-Hong;Han, Kil-Sung
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.581-588
    • /
    • 2002
  • In this paper, we newly propose the optical CDMA routing scheme for the radio access network. At the radio base station (RBS), the received radio signals are multiplied by the PN codes and converted to the CDMA radio signals. In the next optical CDMAS are performed and multiplxed by using the PN codes which are the addresses of the routing mobile switching center (MSC). At the MSC, the CDMA radio signals are routined to another MSC by the CDM receiver at the routing node. In the case MSC is equal to the desired MSC, the radio signal is correlated by the two-layerd spectrum despreading at a time. Finally we theoretically analyze the signal-to-interference and noise power ratio of regenerated signal and the routing error probability and show the availability of proposed scheme.

Beamforming Matrix Transformation and User Scheduling for MIMO Systems (다중 안테나 빔형성 메트릭스 변환 기법 및 사용자 선택 기법)

  • Park, Jong-Rok;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.25-33
    • /
    • 2012
  • Random beamforming (RBF) uses the signal to interference plus noise ratio (SINR) feedback to select users in multiple-input multiple-output (MIMO) systems. A large number of users are required to obtain the gain of multi-user diversity for a downlink transmission. However, if the number is not large enough, it may be difficult to obtain multi-user diversity, leading to a rapid degradation in performance. To resolve this problem, we propose the beamforming matrix transformation and the user scheduling method. The beamforming matrix transformation scheme uses the SINRs of each users and have a better performance than conventional schemes over a small number of users. In addition, we propose the user scheduling scheme corresponding to the beamforming matrix transformation. In simulation results, we demonstrate that the sum-rate can be improved according to the number of users.

Efficient Usage of Secondary Scramble Code via Optical Repeater in W-CDMA System (W-CDMA 시스템에서 광중계기를 이용한 secondary-스크램블 코드의 효율적 활용방안에 대한 연구)

  • Jeon, Eun-Sung;Park, Jun-Hyo;Yang, Jang-Hoon;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.731-741
    • /
    • 2009
  • Optical repeater is often installed at the isolated area. Spatial separation makes it possible to reduce the inter-code interference when secondary scrambling codes are used for traffic connected through repeater. In this paper, we propose five secondary scrambling code usage scenarios with the aids of optical repeater to maximize the user capacity. In order to evaluate the performance, dynamic system level simulation is performed. We also propose a base station-repeater switching where each active users can change access points by comparing the channel condition from base station and repeater thorough secondary common pilot channel (S-CPICH) signal to noise-interference ratio (SINR). Moreover, primary-secondary scramble code replacing scheme is proposed which replaces secondary scramble code with primary scramble code when a call using primary scramble code is ended and its corresponding OVSF code is available to users using the secondary scramble code

Partly Random Multiple Weighting Matrices Selection for Orthogonal Random Beamforming

  • Tan, Li;Li, Zhongcai;Xu, Chao;Wang, Desheng
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.892-901
    • /
    • 2016
  • In the multi-user multiple-input multiple-output (MIMO) system, orthogonal random beamforming (ORBF) scheme is proposed to serve multiple users simultaneously in order to achieve the multi-user diversity gain. The opportunistic space-division multiple access system (OSDMA-S) scheme performs multiple weighting matrices during the training phase and chooses the best weighting matrix to be used to broadcast data during the transmitting phase. The OSDMA-S scheme works better than the original ORBF by decreasing the inter-user interference during the transmitting phase. To save more time in the training phase, a partly random multiple weighting matrices selection scheme is proposed in this paper. In our proposed scheme, the Base Station does not need to use several unitary matrices to broadcast pilot symbol. Actually, only one broadcasting operation is needed. Each subscriber generates several virtual equivalent channels with a set of pre-saved unitary matrices and the channel status information gained from the broadcasting operation. The signal-to-interference and noise ratio (SINR) of each beam in each virtual equivalent channel is calculated and fed back to the base station for the weighting matrix selection and multi-user scheduling. According to the theoretical analysis, the proposed scheme relatively expands the transmitting phase and reduces the interactive complexity between the Base Station and subscribers. The asymptotic analysis and the simulation results show that the proposed scheme improves the throughput performance of the multi-user MIMO system.

Sensitivity of Feedback Channel Delay on Transmit Adaptive Array (적응형 송신 빔 성형을 적용한 CDMA 시스템의 귀환 채널 지연에 따른 성능)

  • 안철용;한진규;김동구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.579-585
    • /
    • 2002
  • The investigation into the effect of various feedback errors on system performance can help the robust feedback channel design and transmission of exact feedback channel information as well. In this paper, we address the algorithm that determines space combining weight vector maximizing received signal power at mobile on frequency flat fading channel and investigate the performance degradation by feedback channel delay in the FDD/CDMA systems employing transmit beamforming. We observe the effect of feedback channel delay corresponding to the number of transmit antennas and the temporal/spatial correlation of channel. The results show that performance is more sensitive to feedback delay with the larger number of antennas when fadings at transmit antennas are not spatially correlated.

Optimal Power Allocation for Spatial Division Multiplexing Scheme at Relays in Multiuser Distributed Beamforming Networks (다중 사용자 분산 빔포밍 네트워크의 중계기에서의 공간 분할 다중화 기법을 위한 최적 전력 할당 방법)

  • Ahn, Dong-Gun;Seo, Bang-Won;Jeong, Cheol;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.360-370
    • /
    • 2010
  • In this paper, a distributed beamforming problem is considered in an amplify-and-forward (AF) wireless relay network consist of multiple source-destination pairs and relaying nodes. To exploit degree of freedom of the number of beamformers, in the first step, we proposed that the sources transmit their signals through orthogonal channels. During the second step, the relays transmit their received signals multiplied by complex weights to amplify and compensate for phase changes introduced by the backward channels through one common channel. The optimal beamforming vectors are obtained through minimization of the total relay transmit power while the signal-to-interference-plus-noise ratios (SINRs) at the destinations are above certain thresholds to meet a quality of services (QoSs) level. In the numerical example, it is shown that the proposed scheme needs less transmit power for moderate network data rates than other schemes, such as space division multiplexing or time-division multiplexing scheme.

Real-Time Frequency Interference Analysis System for Performance Degradation Analysis of MIMO-OFDM WLAN Due to WPAN Interferer (WPAN 간섭원에 의한 MIMO-OFDM WLAN의 성능 열화 분석을 위한 실시간 주파수 간섭 분석 시스템)

  • Yoon, Hyungoo;Park, Jin-Soo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.88-91
    • /
    • 2016
  • In this paper, we have proposed the frequency interference analysis system using both LabVIEW and Universal Software Radio Peripheral(USRP) for performance degradation analysis of Multi Input Multi Output-Orthogonal Frequency Division Multiplexing(MIMO-OFDM) Wireless Local Area Network(WLAN) due to Wireless Local Area Network(WPAN) interferer. The proposed system consists of three part, i.e., victim, channel, and interferer. Both victim and interferer are implemented by LaBVIEW and a USRP board. Then interfering signal and additive white Gaussian noise are combined with the wanted signals of a victim. Measured Bit Error Rate(BER) at the victim receiver is compared with theoretical BER according to various signal to interference plus noise power ratio (SINR) values. Measured and theoretical BER curves show good agreement.

Performance Evaluation of Channel Shortening Time Domain Equalizer in Wireless LAN Environment (무선랜 환경에서 채널 단축 시간영역 등화기의 성능평가)

  • Yoon Seok-Hyun;Yu Hee-Jung;Lee Il-Gu;Jeon Tae-Hyun;Lee Sok-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.240-248
    • /
    • 2006
  • In this paper, we consider an OFDM receiver algorithm design for IEEE 802.11a/p system, which targeting large coverage area while keeping the transmission format unchanged. Particularly, taking into account the inter-symbol interference(ISI) and inter-carrier interference(ICI) that can be induced with large RMS delay spread, we employ channel shortening time-domain equalizer(TEQ) and evaluate the receiver performance in terms of SINR and packet error rate(PER). The preamble defined in IEEE802.11a/p is used to estimated the initial equalizer tap coefficients. Primary purpose of the paper is to give an answer to the question, though partially, whether or not 16-QAM constellation can be used in none line of sight environment at the boundary of a large coverage area. To this end, we first analyze the required TEQ parameters for the target channel environment and then perform simulation for PER performance evaluation in a generic frequency selective fading channel with exponential power-delay profile.