• Title/Summary/Keyword: SI direction

Search Result 602, Processing Time 0.031 seconds

An Analytical Model for the Threshold Voltage of Short-Channel Double-Material-Gate (DMG) MOSFETs with a Strained-Silicon (s-Si) Channel on Silicon-Germanium (SiGe) Substrates

  • Bhushan, Shiv;Sarangi, Santunu;Gopi, Krishna Saramekala;Santra, Abirmoya;Dubey, Sarvesh;Tiwari, Pramod Kumar
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.367-380
    • /
    • 2013
  • In this paper, an analytical threshold voltage model is developed for a short-channel double-material-gate (DMG) strained-silicon (s-Si) on silicon-germanium ($Si_{1-X}Ge_X$) MOSFET structure. The proposed threshold voltage model is based on the so called virtual-cathode potential formulation. The virtual-cathode potential is taken as minimum channel potential along the transverse direction of the channel and is derived from two-dimensional (2D) potential distribution of channel region. The 2D channel potential is formulated by solving the 2D Poisson's equation with suitable boundary conditions in both the strained-Si layer and relaxed $Si_{1-X}Ge_X$ layer. The effects of a number of device parameters like the Ge mole fraction, Si film thickness and gate-length ratio have been considered on threshold voltage. Further, the drain induced barrier lowering (DIBL) has also been analyzed for gate-length ratio and amount of strain variations. The validity of the present 2D analytical model is verified with ATLAS$^{TM}$, a 2D device simulator from Silvaco Inc.

A Proposal of Direction of Wind Ventilation Forest through Urban Condition Analysis - A Case Study of Pyeongtaek-si - (도시 여건 분석을 통한 바람길숲 조성방향 제시 - 평택시를 사례로 -)

  • SON, Jeong-Min;EUM, Jeong-Hee;SUNG, Uk-Je;BAEK, Jun-Beom;KIM, Ju-Eun;OH, Jeong-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.101-119
    • /
    • 2020
  • Recently, as a plan to improve the particulate matter and thermal environment in the city, urban forests acting as wind ventilation corridor(wind ventilation forest) are promoted nationwide. This study analyzed the conditions for the creation of wind ventilation forest(vulnerable areas of the particulate matter and thermal environment, distribution of wind ventilation forest, characteristics of ventilation corridor) of in Pyeongtae-si, one of the target cities of wind ventilation forest project. Based on the results, the direction of developing on the wind ventilation forest in Pyeongtaek-si was suggested. As a result of deriving areas vulnerable to particulate matter and thermal environment, it was most vulnerable in urban areas in the eastern area of Pyeongtaek-si. Especially, emissions were high from industrial complexes and roads such as the Pyeongtaek-si thermal power plant, ports, and the national road no. 1. The wind ventilation forest in Pyeongtaek-si was distributed with small-scale windgenerating forests, wind-spreading forests, and wind-connection forests fragmented and disconnected. The characteristic of the overall wind ventilation corridor in Pyeongtaek-si is that the cold air generated from Mt.Mubong, etc., strongly flowed into Pyeongtaek-si and flowed in the northwest direction. Therefore, it is necessary to preserve and expand the wind-generating forests in Pyeongtaek-si in the long term, and it was important to create wind-spreading forests and wind-connection forests so that cold air could flow into the vulnerable area. In addition, in industrial complexes and roads where particulate matter is generated, planting techniques should be applied to prevent the spread of particulate matte to surrounding areas by creating wind-spreading forests considering the particulate matter blocking. This study can be used not only as the basis data for wind ventilation forest project in Pyeongtaek-si, but also as the basis data for urban forest creation and management.

Dislocation Density Estimation and mosaic Model for GaN/SiC(0001) by High Resolution x-ray Diffraction

  • Yang, Quankui;Li, Aizhen
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.43-46
    • /
    • 1997
  • High resolution x-ray diffraction and two dimensional triple axis mapping were used to characterize a group of GaN layers of about 1.1$\mu$m grown by direct current plasma molecular beam epitaxy technique on 6H-SiC(0001). A FWHM of 11.9 arcmins for an $\omega$ scan and 1.2 arcmins for an $\omega$/2$\theta$ scan were observed. A careful study of the rocking curves showed there were some large mosaics in the GaN layer and a tilt of $0.029^{\circ}$ between the GaN layer and the SIC substrate was detected. The two dimensional triple axis mapping showed that the GaN mosaica were disoriented in the (0001) plane but rather uniformed in direction perpendicular to the plane. A mosaics were disoriented in the (0001) plane but rather uniformed in direction perpendicular to the plane. A mosaic model was deduced to explain the phenomenon and the dislocation density was estimated to be about~$10^9\;\textrm{cm}^{-2}$ acc ding to the model.

  • PDF

Effect of Heat-treatment Conditions on Orientation, Structures and Resistances of LaNiO3 Thin Films by Sol-gel process (열처리조건이 LaNiO3 졸-겔 박막의 배향성과 구조 및 저항성에 미치는 영향)

  • 박민석;김대영;서병준;김강언;정수태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.859-865
    • /
    • 2004
  • LaNiO$_3$(LNO) thin films on (100) Si substrates are prepared by sol-gel method on heat treatment conditions, such as heat transfer direction, pyrolysis and annealing process, and annealing temperatures and times. The effect of heat treatment conditions on the (100) orientations, structures and resistances of the thin films are investigated by XRD, SEM(FESEM), and a lout probe method. Highly (100) orientation factor(0.97), a pseudocubic crystalline structure with a dense and uniform microstructure could be formed by the following conditions: 1) the heat transfer direction is from Si substrate to LNO, 2) the pyrolysis and annealing process are alternated, 3) the annealing temperature is $650^{\circ}C$ and 4) the annealing times is 3 minutes. The sheet resistance of thin films decreased with increasing of a annealing temperature and time, and a number of coating.

Microstructure and Magnetic Properties in Fe-Co-B/M Films for Soft Magnetic Underlayer of Perpendicular Magnetic Recording Media (수직자기기록매체용 Fe-Co-B/M 하지연자성층의 미세결정구조 및 자기특성)

  • 공석현;손인환;금민종;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.888-892
    • /
    • 2004
  • It is necessary to develop soft magnetic layer with high saturation magnetization 4 $\pi{M}_s$ and in-plane magnetic anisotropy field Hk for soft magnetic underlayer of perpendicular magnetic recording media with high signal to noise ratio. Fe-Co-B layer with high 4 $\pi$Ms of about 23 kG deposited on Ni-Fe and Ni-Fe/Si seedlayer exhibited very high in-plane magnetic anisotropy filed Hk of about 280 and 380 Oe, respectively, In-plane XRD studies clarified that the lattice spacing of planes along the easy axis direction was longer than that along the hard axis direction in the Fe-Co-B layers with high Hk. These results indicate that high Hk of Fe-Co-B/Ni-Fe and Fe-Co-B/[Ni-Fe/si] layers were resulted from magnetoelastic anisotropy owing to a residual stress. Moreover, the high Hk in the Fe-Co-B/Ni-Fe layer was maintained until 30$0^{\circ}C$ annealing temperature.

A Study on the Influence Factors Analysis on Architectural Programs for Youth Training Centers between User Groups - Based on the Youth Training Center Project in Cheonan-si - (청소년시설의 이용집단별 건축프로그램 영향인자분석 - 천안시 청소년수련관 프로젝트를 중심으로 -)

  • Hyun, Chang-Yong;Ryu, Soo-Hoon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.27 no.2
    • /
    • pp.87-95
    • /
    • 2020
  • The purpose of this study is presentation of architectural planning direction and program space of youth training center. For this goal, surveyed the characteristics of youth and local residents who the main user of the center Through this survey, it could be accommodated about the needs of youth training facilities and seek user-centered planning methodologies. To this end, this study conducted a survey of users of youth training facilities in Cheonan-si to suggest the importance of architectural planning direction and space to reflect users' needs and regional characteristics. In the process, this study conducted a consciousness survey and importance influence factors assessment focused on commonalities and differences between youth and adult groups, which are the main user groups of youth training facilities. It is believed that the results of consciousness survey and importance influence factors assessment will be used as basic data to select the scale and programs of space that reflect the needs of users when planning youth facilities and related facilities in the future.

New Analysis Approach to the Characteristics of Excimer Laser Annealed Polycrystalline Si Thin Film by use of the Angle wrapping (엑시며 레이저에 의해 형성된 다결정 실리콘 박막의 Angle wrapping에 의한 깊이에 따른 특성변화)

  • Lee, Chang-U;Go, Seok-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.884-889
    • /
    • 1998
  • Amorphous silicon films of large area have been crystallized by a line shape excimer laser beam of one dimensional scanning with a gaussian profile in the scanning direction. In order to characterize the crystalline phase transition of thickness variables in excimer laser annealing(ELA), angle wrapping method was used. And also to characterize the residual stresses of crystalline phase transition in the case of angle wrapped-crystalline silicon on corning 7059 glass, polarized raman spectroscopies were measured at various laser energy density and substrate temperature. The residual stress varies from $9.0{\times}10^9$ to $9.9{\times}10^9$, and from $9.9{\times}10^9$ to $1.2{\times}10^10$dyne/${cm}^2$ of the substrate temperature at room temperature and varies from $8.1{\times}10^9$ to $9.0{\times}10^9$, and from $9.0{\times}10^9$ to $9.9{\times}10^9$dyne/${cm}^2$ of the substrate temperature at $400^{\circ}C$ as a function of direction from surface to substrate. According to the direction from the surface in liquid phase to the interface and from the interface to near the substrate in solid phase of recrystallized Si thin film, respectively. Thus, the stress is increased from(Liquid phase to solid phase) with phase transition.

  • PDF

Characteristics of metal-induced crystallization (MIC) through a micron-sized hole in a glass/Al/$SiO_2$/a-Si structure (Glass/Al/$SiO_2$/a-Si 구조에서 마이크론 크기의 구멍을 통한 금속유도 실리콘 결정화 특성)

  • Oh, Kwang H.;Jeong, Hyejeong;Chi, Eun-Ok;Kim, Ji Chan;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.59.1-59.1
    • /
    • 2010
  • Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is studied with the structure of a glass/Al/$SiO_2$/a-Si, in which the $SiO_2$ layer has micron-sized laser holes in the stack. An oxide layer between aluminum and a-Si thin films plays a significant role in the metal-induced crystallization (MIC) process determining the properties such as grain size and preferential orientation. In our case, the crystallization of a-Si is carried out only through the key hole because the $SiO_2$ layer is substantially thick enough to prevent a-Si from contacting aluminum. The crystal growth is successfully realized toward the only vertical direction, resulting a crystalline silicon grain with a size of $3{\sim}4{\mu}m$ under the hole. Lateral growth seems to be not occurred. For the AIC experiment, the glass/Al/$SiO_2$/a-Si stacks were prepared where an Al layer was deposited on glass substrate by DC sputter, $SiO_2$ and a-Si films by PECVD method, respectively. Prior to the a-Si deposition, a $30{\times}30$ micron-sized hole array with a diameter of $1{\sim}2{\mu}m$ was fabricated utilizing the femtosecond laser pulses to induce the AIC process through the key holes and the prepared workpieces were annealed in a thermal chamber for 2 hours. After heat treatment, the surface morphology, grain size, and crystal orientation of the polycrystalline silicon (pc-Si) film were evaluated by scanning electron microscope, transmission electron microscope, and energy dispersive spectrometer. In conclusion, we observed that the vertical crystal growth was occurred in the case of the crystallization of a-Si with aluminum by the MIC process in a small area. The pc-Si grain grew under the key hole up to a size of $3{\sim}4{\mu}m$ with the workpiece.

  • PDF

Single crystal growth and structure analysis of superionic conductor ${\beta}-Ag_3SI$ (초이온도전체 ${\beta}-Ag_3SI$의 단결정 육성과 결정구조 해석)

  • Nam Woong Cho;Kwang Soo Yoo;Hyung Jin Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • Single crystals of the superionic conductor ${\beta}-Ag_3SI$ were prepared by thermal treatmentr from the reactant mixture of AgI and $Ag_2S$. The growing single crystals were made to spherical shape of $200{mu}m$ in diameter. The detailed structures analyses revealed that $Ag^+$ in ${\beta}-Ag_3SI$ distribute on 12h site of 4-coordination inpreference to 3c site of 6-coordination. The effective one-particle potential (o.p.p.). of $Ag^+$ along [110] direction was evaluated from the probability density function(p.d.f.) Activation energy calculated from the o.p.p. curve has been found to be 0.012 eV for the diffusion of $Ag^+$ on (001) plane in the ${\beta}-Ag_3SI$ structure.

  • PDF

Wire Electric Discharge Machining Process of Various Crystalline Silicon Wafers (다양한 실리콘 웨이퍼 제조를 위한 와이어 전기 방전가공)

  • Moon, Hee-chan;Choi, Sun-ho;Park, Sung-hee;Jang, Bo-yun;Kim, Jun-soo;Han, Moon-hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.301-306
    • /
    • 2017
  • Wire electrical discharge machining (WEDM) process was evaluated to slice Silicon (Si) for various applications. Specifically, various Si workpieces with various resistances, such as single and multi crystalline Si bricks and wafers were used. As conventional slicing processes, such as slurry-on or diamond-on wire slicing, are based on mechanical abrasions between Si and abrasive, there is a limitation to decrease the wafer thickness as well as kerf-loss. Especially, when the wafer thickness is less than $150{\mu}m$, wafer breakage increases dramatically during the slicing process. Single crystalline P-type Si bricks and wafers were successively sliced with considerable slicing speed regardless of its growth direction. Also, typical defects, such as microcracks, craters, microholes, and debris, were introduced when Si was sliced by electrical discharge. Also, it was found that defect type is also dependent on resistance of Si. Consequently, this study confirmed the feasibility of slicing single crystalline Si by WEDM.