Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.5.301

Wire Electric Discharge Machining Process of Various Crystalline Silicon Wafers  

Moon, Hee-chan (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research)
Choi, Sun-ho (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research)
Park, Sung-hee (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research)
Jang, Bo-yun (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research)
Kim, Jun-soo (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research)
Han, Moon-hee (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.5, 2017 , pp. 301-306 More about this Journal
Abstract
Wire electrical discharge machining (WEDM) process was evaluated to slice Silicon (Si) for various applications. Specifically, various Si workpieces with various resistances, such as single and multi crystalline Si bricks and wafers were used. As conventional slicing processes, such as slurry-on or diamond-on wire slicing, are based on mechanical abrasions between Si and abrasive, there is a limitation to decrease the wafer thickness as well as kerf-loss. Especially, when the wafer thickness is less than $150{\mu}m$, wafer breakage increases dramatically during the slicing process. Single crystalline P-type Si bricks and wafers were successively sliced with considerable slicing speed regardless of its growth direction. Also, typical defects, such as microcracks, craters, microholes, and debris, were introduced when Si was sliced by electrical discharge. Also, it was found that defect type is also dependent on resistance of Si. Consequently, this study confirmed the feasibility of slicing single crystalline Si by WEDM.
Keywords
Wire; Electrical discharge; Silicon; Wafer; Brick;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Praveen, P. Michael, W. Benjamin, E. Oliver, J. K. Lejo, D. M. Valentin, and K. Radovan, Sol. Energy Mater. Sol. Cells, 157, 200 (2016). [DIO: http://dx.doi.org/10.1016/j.solmat.2016.05.027]   DOI
2 X. Yupeng, H. Peide, W. Shuai, L. Peng, L. Shishu, Z. Yuanbo, H. Shaoxu, Z. Huishi, Z. Chunhua, and M. Yanhong, Sol. Energy Mater. Sol. Cells, 51, 1697 (2015). [DIO: http://dx.doi.org/10.1016/j.rser.2015.07.035]
3 V. D. Dzung, H. P. Phan, Q. Afzaal, and D. Toan, Roy. Soci. Chem., 6, 21302 (2016). [DIO: http://dx.doi.org/10.1039/C5RA28164D]
4 Q. Li, J. Bai, Y. Fan, and Z. Zhang, Int. J. Adv. Manuf. Technol., 82, 1089 (2016). [DIO: http://dx.doi.org/10.1007/s00170-015-7412-8]   DOI
5 L. Jing, W. Yao, Y. He, Z. Cheng, J. Yuan, and J. Luo, Int. J. Adv. Manuf. Technol., 82, 523 (2016). [DIO: http://dx.doi.org/10.1007/s00170-015-7370-1]   DOI
6 F. Hu, S. Yun, J. Zha, K. Chen, S. Zou, F. Liang, and X. Su, Sol. Energy Mater. Sol. Cells, 159, 121 (2017). [DIO: http://dx.doi.org/10.1016/j.solmat.2016.08.032]   DOI
7 M. Kunieda, B. Lauwers, K. P. Rajurkar, and B. M. Schumacher, Mechanic. Mater. Eng., 54, 599 (2005).
8 C. Lihan, R. Xianpei, F. Baodian, Z. Jincheng, and C. Chao, Optik, 125, 3918 (2014). [DIO: http://dx.doi.org/10.1016/j.ijleo.2014.01.159]   DOI
9 T. M. Bruton, Sol. Energy Mater. Sol. Cells, 72, 3. (2002). [DOI: http://dx.doi.org/10.1016/S0927-0248(01)00145-3]   DOI
10 M. R. Swanson, Prog. Photovolt, 14, 443 (2006). [DOI: https://doi.org/10.1002/pip.709]   DOI
11 T. Saga, NPG Asia Mater., 2, 96 (2010). [DOI: http://dx.doi.org/10.1038/asiamat.2010.82]   DOI
12 S. Bhagavat and L. Kao, Int. J. Mach. Tool. Manuf., 48, 95 (2008). [DIO: http://dx.doi.org/10.1016/j.ijmachtools.2007. 07.009].   DOI
13 R. Steeman, J. Yang, O. Mjos, and S. Adolphus, Energy Procedia, 15, 20 (2012). [DIO: http://dx.doi.org/10.1016/j.egypro.2012.02.003]   DOI
14 Y. F. Luo, C. G. Chen, and Z. F. Tong, J. Mater. Sci., 27, 5805 (1992). [DIO: http://dx.doi.org/10.1007/BF01119742]   DOI
15 D. T. Pham, S. S. Dimov, S. Bigot, A. Ivanov, and K. Popov, J. Mater. Process. Technol., 149, 50 (2004). [DIO: http:// dx.doi.org/10.1016/j.jmatprotec.2004.02.008]   DOI
16 W. Y. Peng and Y. S. Liao, J. Mater. Process. Technol., 140, 274 (2003). [DIO: http://dx.doi.org/10.1016/S0924-0136(03)00718-0]   DOI
17 W. Wang, Z. D. Liu, Z. J. Tian, H. Y. Huang, and Z. X. Liu, J. Mater. Process. Technol., 209, 3149 (2007) [DIO: http://dx.doi.org/10.1016/j.jmatprotec.2008.07.029]
18 B. Iryna, L. Oleksandr, V. Timur, B. Sergey, and M. K. Frank, Sol. Energy Mater. Sol. Cells, 159, 128 (2017) [DIO: http://dx.doi.org/10.1016/j.solmat.2016.08.038]   DOI