• 제목/요약/키워드: SHEAR STRENGTH

검색결과 5,534건 처리시간 0.029초

초고성능 콘크리트에 대한 Perfobond Rib 전단연결재 거동 평가 (Evaluation of Shear Strength of Perfobond Rib in Ultra High Performance Concrete)

  • 강재윤;정우태
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.5015-5020
    • /
    • 2015
  • 기존에 제안된 Perfobond rib connector의 강도평가식은 압축강도가 약 50 MPa 이하의 콘크리트 강도 범위에 대한 Push-out test의 결과로 유도된 것으로서, 압축강도 80 MPa 이상의 초고성능 콘크리트에 대한 전단 연결재 성능 평가를 위하여 Perfobond rib 연결재의 전단강도를 파악하기 위한 Push-out test를 수행하였다. Perfobond rib connector의 제작변수는 관통홀의 지름 및 개수이며, 강섬유가 혼입된 180 MPa의 콘크리와 강섬유를 혼입하지 않은 압축강도 80 MPa의 콘크리트를 적용하여 콘크리트 강도 변화에 대한 전단강도 변화를 검토하였다. 실험결과, 콘크리트 강도와 홀의 개수가 증가함 따라 전단강도가 증가하며, 다웰 효과에 의한 전단강도 증가율도 큰 것으로 나타났다. 기존에 다른 연구자들이 제안한 강도식으로 계산된 예측치와 비교한 결과, 실험값은 Oguejiofor & Hosain[2]이 제안한 강도식에 근접한 결과를 보였다.

비니어 세라믹과 지르코니아 세라믹의 Push-Shear 결합강도 (Push-Shear Bond Strength of Veneering Ceramics and Zirconia Ceramic)

  • 안재석;노형록;이정환
    • 한국콘텐츠학회논문지
    • /
    • 제15권9호
    • /
    • pp.384-394
    • /
    • 2015
  • 본 연구에서는 원통형 지르코니아 코어에 다섯 종류의 지르코니아 비니어 세라믹을 축성하여 push-전단결합강도를 측정하고, 비니어 세라믹의 이축굽힘강도와 지르코니아 글라스 라이너 처리에 따른 전단결합강도 차이를 알아보고자 하였다. 지르코니아 비니어 세라믹은 piston-on-three-ball test로 이축굽힘강도를 측정하였고, 지르코니아 실린더 코어와 비니어 세라믹은 push-shear test로 결합강도를 측정하였으며, 결과값은 이원분산분석을 사용하여 분석하였다. 이축굽힘강도는 Cercon ceram kiss (CE)군에서 가장 높게 측정되었고 전단결합강도는 글라스 처리군과 Triceram(TR)군이 높게 측정 되었으며 Creation ZI(CR)군에서 가장 낮은 값이 측정 되었다. 실험군에서 지르코니아 라이너 처리군이 라이너 처리하지 않는 군보다 전단결합강도가 높게 나타났으며 통계적으로 유의한 차이를 보였다(P<0.05). 따라서 지르코니아 라이너 처리는 지르코니아와 비니어 세라믹의 결합강도를 향상시킬 수 있는 것으로 사료된다.

Influence of the Adhesive, the Adherend and the Overlap on the Single Lap Shear Strength

  • da Silva, Lucas F.M.;Ramos, J.E.;Figueiredo, M.V.;Strohaecker, T.R.
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.1-9
    • /
    • 2006
  • The single lap joint is the most studied joint in the literature in terms of both theory and practice. It is easy to manufacture and the lap shear strength is a useful value for strength assessment and quality control. Simple design rules exist such as the one present in standard ASTM 1002 or in a recent paper by Adams and Davies. The main factors that have an influence on the lap shear strength are the type of adhesive, i.e. ductile or brittle, the adherend yield strength and the overlap length. The overlap increases the shear strength almost linearly if the adhesive is sufficiently ductile and the adherend does not yield. For substrates that yield, a plateau is reached for a certain value of overlap corresponding to the yielding of the adherend. For intermediate or brittle adhesives, the analysis is more complex and needs further investigation. In order to quantify the influence of the adhesive, the adherend and the overlap on the lap shear strength, the experimental design technique of Taguchi was used. An experimental matrix of 27 tests was designed and each test was repeated three times. The influence of each variable could be assessed as well as the interactions between them using the statistical software Statview. The results show that the most important variable on the lap shear strength is the overlap length followed by the type of adherend.

  • PDF

COMPARATIVE STUDY OF SHEAR BOND STRENGTH BETWEEN CP-TI/CO-CR ALLOY AND COMPOSITE RESINS

  • Yoon, Se-Hee;Pae, Ahran;Lee, Seok-Hyung;Lee, Ho-Rim
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.805-814
    • /
    • 2007
  • Statement of problem. Composite resin-veneered metal restorations can be used as an alternative to porcelain-fused-metal restorations. But, because of the relatively low bond strength of veneering composite to metal framework, various surface treatment methods have been introduced to improve the bond strength. Purpose. The object of this study was to compare the shear bond strength of different combinations of each of the two bonding systems and each of the two composite veneering resins to cp-Ti/Co-Cr alloy. Material and methods. Two resin bonding systems (metal conditioner containing MEPS monomer, tribochemical silicoating system) and two composite resins (Gradia, Sinfony) were tested on cp-Ti and Co-Cr alloy. Then, according to manufacturers' instructions, resin bonding systems and composite resins were applied. All test specimens were divided into four groups for each alloy; I) sandblast + Metal Primer II + Gradia (MG), II) sandblast + Metal Primer II + Sinfony (MS), III) Rocatec + Gradia (RG), IV) Rocatec + Sinfony (RS). The shear bond strength was determined using a universal testing machine and all data were statistically analyzed with Mann-Whitney test and Kruskal-Wallis test at the significance level of 0.05. Results. The mean (standard deviations) of shear bond strength according to the combinations of two bonding systems and two composite resins to cp-Ti arranged from 16.44 MPa to 17.07 MPa and the shear bond strength to Co-Cr alloy ranged from 16.26 MPa to 17.70 MPa. The result shows that the difference were not statistically significant. Conclusion. The shear bond strengths of composite resins to both cast cp-Ti and Co-Cr alloy were not significantly different between the metal conditioner and the tribochemical silicoating system. And no differences in bond strength were found between cp-Ti and Co-Cr alloy.

암석절리면 전단강도 예측모델 및 영향요소에 관한 연구 (Study on the Estimation Model of Shear Strength at Rock Joint and Its Influence Factor)

  • 손무락
    • 한국지반공학회논문집
    • /
    • 제39권5호
    • /
    • pp.5-12
    • /
    • 2023
  • 본 연구에서는 암석절리면의 전단강도를 예측하기 위한 기존 여러 모델들에 대해서 조사하고 관련 문제점을 제시함과 더불어 문제점 극복을 위해 새롭게 제안된 모델에 대해서 소개한다. 많은 실험적 결과에 따르면 암석 절리면에서의 전단강도는 절리돌기 각도, 압축강도, 작용 수직응력, 마찰각 및 절리돌기 점착강도, 절리돌기의 점진적 손상을 포함한 많은 복합요인에 따라 달라짐에도 불구하고 기존 강도예측 모델은 이러한 요소들을 충분히 고려하지 못한 점이 있었다. 이러한 문제점을 극복하기 위해 Son(2020)은 새로운 절리면 전단강도 예측모델을 개발하고 그 신뢰성을 실험결과 및 기존 모델과 비교하여 확인한 바 있다. 본 논문에서는 개발모델을 이용하여 절리면 전단강도에 영향을 미치는 여러 요소들에 대해서 조사하고 그 결과를 비교분석 하였다. 본 연구를 통해서 암석절리면 전단강도에 영향을 미치는 요소들에 대하여 보다 자세히 파악할 수 있었다.

불교란 풍화잔적토의 직접전단시험 (Direct Shear Test of Undisturbed Weathered Residual Soils)

  • 오세붕;이영휘;정종혁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.423-430
    • /
    • 1999
  • A weathered residual soil is a soil-like material derived from the in situ weathering and decomposition of rock which has not been transported from its original location. Undisturbed sampling of residual soils is extremely difficult, which has an important effect on investigating the strength and compression characteristics. Thus, a special undisturbed sampling device (direct shear box with shoe) was developed and undisturbed samples were successfully obtained for direct shear tests, Direct shear testing was conducted under unsoaked and soaked condition. As a result, the shear strength of soaked samples was less than that of unsoaked samples, and it was verified that direct shearing of undisturbed samples can evaluate reasonably the shear strength and the slope stability.

  • PDF

Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming

  • Cladera, Antoni;Perez-Ordonez, Juan L.;Martinez-Abella, Fernando
    • Computers and Concrete
    • /
    • 제14권4호
    • /
    • pp.479-501
    • /
    • 2014
  • This paper presents the improvement of the EC-2 and EHE-08 shear strength formulations for concrete beams with shear reinforcement. The employed method is based on the genetic programming (GP) technique, which is configured to generate symbolic regression from a set of experimental data by considering the interactions among precision, accuracy, safety and simplicity. The size effect and the influence of the amount of shear reinforcement are examined. To develop and verify the models, 257 experimental tests on concrete beams from the literature are used. Three expressions of considerable simplicity, which significantly improve the shear strength prediction with respect to the formulations of the different studied codes, are proposed.

Shear Strength of Grout Type Transverse Joint

  • Kim, Yoon-Chil;Park, Jong-Jin
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2002
  • This is the first of two part series on experimental studies of grout type transverse joints. In this study, grout type transverse joints between precast concrete slabs are statically tested to determine the cracking loads and ultimate shear capacities of the grout type transverse joints. The tests are performed with a loading equipment designed and constructed especially in the lab to induce shear failures on the joints of the test specimens. Shape of the transverse joints, grouting materials and amount of prestress are selected as test parameters for the study. The results indicate that epoxy is an excellent grouting material which can be used in limited locations where large tensile stress is acting on the slab. Longitudinal prestressing is also an effective method to increase the shear strength of the transverse joints. A rational method to estimate the cracking and ultimate loads for the design of grout type transverse joints is proposed based on the static loading tests. Success of the tests with shear loading equipment allowed continuing the research further onto the fatigue strength of the grout type joints, which will be presented in the second part of the paper.

  • PDF

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

대형직접전단시험에 의한 RAP 복합지반의 전단강도 특성 연구 (A Study on the Shear Strength Characteristics of Composited Ground applying RAP Method by Large Direct Shear Test)

  • 천병식;서덕동;김종산
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.82-89
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the shear strength characteristics according to the area replacement ratio of RAP and the relative density of in-situ ground was studied through soil laboratory tests and large direct shear tests in a model ground. As a result, the internal friction angle tends to increase in proportion to in-situ relative density(Very Loose, Loose, Medium) in composite ground formed by the same area replacement ratio of RAP and also increase in proportion to increasing the area replacement ratio(30, 40, 50%) of RAP in the same ground condition. Furthermore, the comparative analysis between the experimental value and theoretical value of the shear strength is carried out.

  • PDF