Browse > Article
http://dx.doi.org/10.12989/cac.2014.14.4.479

Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming  

Cladera, Antoni (Department of Physics, University of the Balearic Islands)
Perez-Ordonez, Juan L. (School of Building Engineering and Technical Architecture, University of A Coruna)
Martinez-Abella, Fernando (Department of Construction Technology, University of A Coruna)
Publication Information
Computers and Concrete / v.14, no.4, 2014 , pp. 479-501 More about this Journal
Abstract
This paper presents the improvement of the EC-2 and EHE-08 shear strength formulations for concrete beams with shear reinforcement. The employed method is based on the genetic programming (GP) technique, which is configured to generate symbolic regression from a set of experimental data by considering the interactions among precision, accuracy, safety and simplicity. The size effect and the influence of the amount of shear reinforcement are examined. To develop and verify the models, 257 experimental tests on concrete beams from the literature are used. Three expressions of considerable simplicity, which significantly improve the shear strength prediction with respect to the formulations of the different studied codes, are proposed.
Keywords
artificial intelligence; genetic programming; reinforced concrete; shear strength; beams; stirrups; concrete codes;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Roller, J.J. and Russell, H.G. (1990), "Shear strength of high-strength concrete beams with web reinforcement", ACI Struct. J., 87(2), 191-198.
2 Placas, A. and Regan, P.E. (1971), "Shear failure of reinforced concrete beams", J Am. Concrete Inst, 68(10), 763-773.
3 Rajagopalan, K. and Ferguson, P.M. (1968), "Exploratory shear tests emphasizing percentage of longitudinal steel", ACI Journal, 65(8), 634-638.
4 Regan, P. (1993), "Research on shear: a benefit to humanity or a waste of time? ", Struct. Eng., 71, 337-337.
5 Sarsam, K.F. and Al-Musawi, J.M.S. (1992), "Shear design of high-and normal strength concrete beams with web reinforcement", ACI Struct. J., 89(6), 658-664.
6 Shah, A. and Ahmad, S. (2007), "An experimental investigation into shear capacity of high strength concrete beams", Asian Journal of Civil Engineering (Building and Housing), 8(5), 549-562.
7 Siess, C.P. (1960), "Research, building codes, and engineering practice", J. Am. Concrete Inst., 56(11), 1105-1122.
8 Sigrist, V. (2012), "The future of standardization-Guidelines for the development of user-friendly design codes", Proceedings.56.BetonTage, Neu-Ulm, BFT International, 78(2), 166-167.
9 Swamy, R.N. and Andriopoulos, A.D. (1974), "Contribution of aggregate interlock and dowel forces to the shear resistance of reinforced beams with web reinforcement", Shear in Reinforced Concrete, 129-166.
10 Tan, K.H., Teng, S., Kong, F.K. and Lu, H.Y. (1997), "Main tension steel in high strength concrete deep and short beams", ACI Struct. J., 94(6), 752-768.
11 Tan, K., Kong, F., Teng, S. and Guan, L. (1995), "High-strength concrete deep beams with effective span and shear span variations", ACI Struct. J., 92(4), 395-405.
12 Tsai, H.C. (2011), "Using weighted genetic programming to program squat wall strengths and tune associated formulas", Eng. Appl. Artif. Intel., 24(3), 526-533.   DOI
13 Tompos, E.J. and Frosch, R.J. (2002), "Influence of beam size, longitudinal reinforcement, and stirrup effectiveness on concrete shear strength", ACI Struct. J., 99(5), 559-567.
14 Tsai, H.C. (2013), "Polynomial modeling of confined compressive strength and strain of circular concrete columns", Comput. Concr., 11(6), 603-620.   DOI
15 Tsai, H.C. and Pan, C.P. (2013), "Improving analytical models of circular concrete columns with genetic programming polynomials", Genet. Program. Evol. M., 14(2), 221-243.   DOI
16 Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J., 83(2), 219-231.
17 Walraven, J.C. (1981), "Fundamental analysis of aggregate interlock", ASCE J. Struct. Div., 107(11), 2245-2270.
18 Yoon, Y., Cook, W.D. and Mitchell, D. (1996), "Minimum shear reinforcement in normal, medium, and high-strength concrete beams", ACI Struct. J., 93(5), 576-584.
19 Yu, Q. and Bazant, Z.P. (2011), "Can stirrups suppress size effect on shear strength of RC beams?", J. Struct. Eng., 137(5), 607-617.   DOI
20 Zararis, P.D. and Papadakis, G. (1999), "Influence of the arrangement of reinforcement on the shear strength of RC beams", Proceedings of the 13th Hellenic Conference on Concrete, 1, 110-119.
21 ACI Committee 318 (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
22 Adebar, P. and Collins, M.P. (1996), "Shear strength of members without transverse reinforcement", Can. J. Civ. Eng., 23(1), 30-41.   DOI
23 Anderson, N.S. and Ramirez, J.A. (1989), "Detailing of stirrup reinforcement", ACI Struct. J., 86(5), 507-515.
24 Angelakos, D., Bentz, E.C. and Collins, M.P. (2001), "Effect of concrete strength and minimum stirrups on shear strength of large members", ACI Struct. J., 98(3), 290-300.
25 Bairan, J.M. and Mari, A.R. (2007), "Multiaxial-coupled analysis of RC cross-sections subjected to combined forces", Eng. Struct., 29(8), 1722-1738.   DOI   ScienceOn
26 Cladera, A. and Mari, A.R. (2007), "Shear strength in the new Eurocode 2. A step forward?", Struct. Concr., 8(2), 57-66.   DOI
27 Bentz, E. (2010), "MC2010: Shear strength of beams and implications of the new approaches", Fib bulletin 57: Shear and punching shear in RC and FRC elements, Salo (Italy).
28 Bhal, N.S. (1968), Uber den Einfluss der Balkenhohe auf Schubtragfahigkeit von einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Uber Den Einfluss Der Balkenhohe Auf Schubtragfahigkeit Von Einfeldrigen Stahlbetonbalken Mit Und Ohne Schubbewehrung.
29 Bresler, B. and Scordelis, A.C. (1966), "Shear strength of reinforced concrete beams-Series III", SESM Report, (2).
30 Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beams", ACI Journal, 60(1), 51-74.
31 Collins, M.P. (1998), "Procedures for calculating the shear response of reinforced concrete elements: A Discussion", J. Struct. Eng., 124(12), 1485-1488.   DOI
32 Cladera, A. and Mari, A.R. (2005), "Experimental study on high-strength concrete beams failing in shear", Eng. Struct., 27(10), 1519-1527.   DOI   ScienceOn
33 Cladera, A. and Mari, A.R. (2004a), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: Beams without stirrups", Eng. Struct., 26(7), 917-926.   DOI   ScienceOn
34 Cladera, A. and Mari, A.R. (2004b), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: Beams with stirrups", Eng. Struct., 26(7), 927-936.   DOI   ScienceOn
35 Collins, M.P. (2001), Evaluation of Shear Design Procedures for Concrete Structures, Report Prepared for the CSA Technical Committee on Reinforced Concrete Design, Ottawa, Canada.
36 Collins, M.P., Mitchell, D. and Bentz, E.C. (2008), "Shear design of concrete structures", Struct. Eng., 86(10), 32-39.
37 Collins, M.P. and Kuchma, D. (1999), "How safe are our large, lightly reinforced concrete beams, slabs, and footings?", ACI Struct. J., 96(4), 482-490.
38 Comision Permanente del Hormigon (2008), EHE-2008. Instruccion De Hormigon Estructural, Ministerio de Fomento, Madrid, Espana.
39 Da Silva, W.R.L. and Stemberk, P. (2013), "Genetic-fuzzy approach to model concrete shrinkage", Comput. Concr., 12(2), 109-129.   DOI
40 Darwin, C. (1859), On the Origin of Species by Means of Natural Selection, Cambridge University Press, Cambridge, UK.
41 European Committee for Standardization (CEN). (2002), Eurocode 2: Design of Concrete Structures: Part 1: General Rules and Rules for Buildings, European Committee for Standardization.
42 Dorado, J., Rabunal, J.R., Rivero, D., Santos, A. and Pazos, A. (2002), "Automatic recurrent ANN rule extraction with genetic programming", In Neural Networks, IJCNN'02, Proceedings of the 2002 International Joint Conference, 2, 1552-1557.
43 Elzanaty, A.H., Nilson, A.H. and Slate, F.O. (1986), "Shear capacity of reinforced concrete beams using high-strength concrete", J. Am.Concrete Inst., 83(2), 290-296.
44 Etxeberria, M., Mari, A.R. and Vazquez, E. (2007), "Recycled aggregate concrete as structural material", Mater. Struct., 40(5), 529-541.   DOI   ScienceOn
45 Federation International du Beton. (2012), Model Code 2010, Final Draft, Federation International du Beton,
46 Frosch, R.J. (2000), "Behavior of large-scale reinforced concrete beams with minimum shear reinforcement", ACI Struct. J., 97(6), 814-820.
47 Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater. Struct., 46(12), 2109-2119.   DOI   ScienceOn
48 Gandomi, A.H., Mohammadzadeh, S.D., Perez-Ordonez, J.L. and Alavi, A.H. (2014), "Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups", Applied Soft Comp., 19, 112-120.   DOI
49 Gonzalez-Fonteboa, B. and Martinez-Abella, F. (2007), "Shear strength of recycled concrete beams", Constr. Build. Mater., 21(4), 887-893.   DOI   ScienceOn
50 Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI (USA).
51 Keskin, R.S.O. and Arslan, G. (2013), "Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs", Comput. Concr., 12(5), 697-715.   DOI
52 Johnson, M.K. and Ramirez, J.A. (1989), "Minimum shear reinforcement in beams with higher strength concrete", ACI Struct. J., 86(4), 376-382.
53 Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30(6), 1515-1525.   DOI   ScienceOn
54 Karayiannis, C.G., and Chalioris, C.E. (1999), "Experimental investigation of the influence of stirrups on the shear failure mechanism of reinforced concrete beams", Proceedings of the 13th Hellenic Conference on Concrete, 1, 133-141.
55 Kong, P.Y.L. and Rangan, B.V. (1998), "Shear strength of high-performance concrete beams", ACI Struct. J., 95(6), 677-688.
56 Krefeld, W.J. and Thurston, C.W. (1966), "Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams", ACI Journal, 63(4), 451-476.
57 Leonhardt, F. and Walther, R. (1962), "Schubversuche an Einfeldrigen Stahlbeton-Balken mit und ohne Schubbewehrung zur Ermittlung der Schubtragfhigkeit und der Oberen Schubspannungsgrenze", Heft 151, Deutcher Ausschuss Fr Stahlbeton, 66.
58 Lubell, A., Sherwood, T., Bentz, E. and Collins, M. (2004), "Safe shear design of large, wide beams", Concr. Int., 26(1), 66-78.
59 Mari, A. R. and Cladera, A. (2006), "Calculo a cortante de vigas de hormigon armado y pretensado: una propuesta de calculo normativo", Hormigon y Acero, 242, 51-63.
60 Mphonde, A.G. and Frantz, G.C. (1985), "Shear tests of high-and low-strength concrete beams with stirrups", High-Strength Concrete, 179-196.
61 Mari, A., Cladera, A., Oller, E. and Bairan, J. (2014), "Shear design of FRP reinforced concrete beams without transverse reinforcement", Compos Part B: Eng, 57, 228-241.   DOI
62 Mattock, A.H. and Wang, Z. (1984), "Shear strength of reinforced concrete members subject to high axial compressive stress", Journal of the American Concrete Institute, 81(3), 287-298.
63 McGormley, J.C., Cleary, D.B. and Ramirez, J.A. (1996), "The performance of epoxy-coated shear reinforcement", ACI Struct. J., 93(5), 531-537.
64 Navarro Gregori, J., Miguel Sosa, P., Fernandez Prada, M.A. and Filippou, F.C. (2007), "A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading", Eng. Struct., 29(12), 3404-3419.   DOI   ScienceOn
65 Ozcebe, G., Ersoy, U. and Tankut, T. (1999), "Evaluation of minimum shear reinforcement requirements for higher strength concrete", ACI Struct. J., 96(3), 361-368.
66 Park, W.J., Noguchi, T. and Lee, H.S. (2013), "Genetic algorithm in mix proportion design of recycled aggregate concrete", Comput. Concr., 11(3), 183-199.   DOI   ScienceOn
67 Perez, J.L., Cladera, A., Rabunal, J.R. and Martinez-Abella, F. (2012), "Optimization of existing equations using a new Genetic Programming algorithm: Application to the shear strength of reinforced concrete beams", Adv. Eng. Software, 50(1), 82-96.   DOI   ScienceOn
68 Perez, J.L., Cladera, A., Rabunal, J.R. and Abella, F.M. (2010), "Optimal adjustment of EC-2 shear formulation for concrete elements without web reinforcement using Genetic Programming", Eng. Struct., 32(11), 3452-3466.   DOI   ScienceOn
69 Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press Cambridge, USA.