• Title/Summary/Keyword: SH-SY5Y neuroblastoma cell

Search Result 96, Processing Time 0.026 seconds

Identification of differentially expressed Genes by methyl mercury in neuroblastoma cell line using SSH

  • Kim, Youn-Jung;Chang, Suk-Tai;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.167-167
    • /
    • 2002
  • Methylmercury (MeHg), one of the heavy metal compound, can cause severe damage to the central nervous system in humans. Many reports have contributed MeHg poisoning to contaminated foods and release into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established. To find genes differentially expressed by MeHg in neuronal cell, we peformed forward and reverse suppression subtractive hybridization (SSH) method on mRNA derived from neuroblastoma cell line, SH-SY5Y treated with solvent (DMSO) and 6.25 uM (IC$\sub$50/) MeHg. Differentially expressed CDNA clones were sequenced and the mRNAs were re-examined on Northern blots. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences has provided an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as common environmental pollutants.

  • PDF

Protective Effects of Helianthus annuus Seed Extract against Chemical-Induced Neuronal Cell Death (해바라기씨 추출물의 뇌세포에 대한 사멸 보호 효과)

  • Park, Ja-Young;Woo, Sang-Uk;Heo, Jin-Chul;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.213-219
    • /
    • 2007
  • To develop an anti-dementia agent with potential therapeutic value in the protection of neuronal cells, we selected a water extract of Helianthus annuus seed for analysis. We measured acetylcholinesterase inhibitory activity in the extract, and analyzed the protective effect of the extract on neuronal cell death induced by hydrogen peroxide, or amyloid ${\beta}-peptide$, of SH-SY5Y neuroblastoma cells. The result showed that the extinct exerted protective effects of 83%, 72% and 53% respectively, on cell death induced by 100M, 200M, and 500M hydrogen peroxide. Also, when 50M of amyloid ${\beta}-peptide$ was added to the cells, the extract showed a protective effect (up to 80%) on cell death. Overall, the results showed that the H. annuus extract inhibited acetylcholinesterase activity in a dose-dependent manner, and the extract also strongly protected against cell death induced by hydrogen peroxide or amyloid ${\beta}-peptide$.

Spinacia oleracea Extract Protects against Chemical-Induced Neuronal Cell Death (시금치 추출물에 의한 뇌세포 사멸 보호 효과)

  • Park, Ja-Young;Heo, Jin-Chul;Woo, Sang-Uk;Shin, Heung-Mook;Kwon, Taeg-Kyu;Lee, Jin-Man;Chung, Shin-Kyo;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.425-430
    • /
    • 2007
  • To investigate the potential therapeutic value of a plant extract against amyloid ${\beta}-peptide-induced$ cell damage, we first screened extracts of 250 herbs, and finally selected a water extract of Spinacia oleracea for further study. This extractshowed the potential to inhibit the reactions of oxidants. We measured the angiotensin-converting-enzyme (ACE) inhibitory activity of the extract, and assessed the ability of the extract to protect neuronal cells from chemical-induced cell death. SH-SY5Y neuroblastoma cells were used in this assay. The extract exerted protective effects on $H_2O_2-induced$ cell death, when $H_2O_2$ was used at 100 M, 200 M, and 500 M (protection of 87%, 73%, and 58%, respectively). When 50 M of amyloid ${\beta}-peptide$ was added to the test cells, however, the extract had no protective effect on cell death. The extract inhibited ACE activity in a dose-dependent manner, and exhibited potent protection against the deleterious effects of $H_2O_2$. In sum, these results suggest that a water extract of Spinacia oleracea has the potential to afford protection against chemical-induced neuronal cell death, and the extract may be useful in the treatment of neurodegenerative diseases. The precise molecular mechanism of neuroprotection is under investigation.

Protective Effects of Rehmannia Glutinosa Extract and Rehmannia Glutinosa Vinegar against b-amyloid-induced Neuronal Cell Death (베타아밀로이드로 유도된 신경세포사멸에 대한 지황(地黃) 및 지황식초(地黃食醋)의 보호효과)

  • Song, Hyo-In;Kim, Kwang-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.190-198
    • /
    • 2007
  • Alzheimer's disease, a representative neurodegenerative disorder, is characterized by the presence of senile plaques and neurofibrillary tangles accompanied by neuronal damages. b-Amyloid peptide is considered to be responsible for the formation of senile plagues that accumulate in the brains of patients with Alzheimer's disease. There has been compelling evidence supporting that b-amyloid-induced cytotoxicity is mediated through generation of reactive oxygen species. In this study, we have investigated the possible protective effect of Rehmannia glutihosaagainst b-amyloid-induced oxidative ceil death in cultured human neuroblastoma SH-SY5Y cells. SH-SY5Y cells treated with b-amyloid underwent apoptotic death as determined by morphological features and positive in situterminal end-labeling (TUNEL staining). Rehmannia glutinosawater extract, wine, and vinegar pretreatments attenuated b-amyloid-induced cytotoxicity and apoptosis. Rehmannia glutinosa vinegar exhibited maximum protective effect by increasing the expression of anti-apoptotic protein, Bcl-2. in addition to oxidative stress, b-amyloid-treatment caused nitrosative stress via marked increase in the levels of nitric oxide, which was effectively blocked by Rehmannia glutinosa. To further explore the possible molecular mechanisms underlying the protective effect of Rehmannia glutinosa, we assessed the mRNA expression of cellular antioxidant enzymes. Treatment of Rehmannia glutinosa vinegar led to up-regulation of heme oxygemase-1 and catalase. These results suggest that Rehmannia glutinosa could modulate oxidative neuronal cell death caused by b-amyloid and may have preventive or therapeutic potential in the management of Alzheimer's disease. Particularly, Rehmannia glutinosa vinegar can augment cellular antioxidant capacity, there by exhibiting higher neuroprotective potential.

Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells

  • Seung Yeon Sohn;Thin Thin San;Junhyung Kim;Hyun-Jung Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.65-76
    • /
    • 2024
  • Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.

Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells

  • Han, A Reum;Yang, Ji Woong;Na, Jung-Min;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.439-444
    • /
    • 2019
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer's disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced ${\beta}$-amyloid ($A{\beta}$) generation and development of AD is not yet known. We have now investigated the protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride (KHG26702), a novel thiazole derivative, on oxygen-glucose deprivation (OGD)-reoxygenation (OGD-R)-induced $A{\beta}$ production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with KHG26702 significantly attenuated OGD-R-induced production of reactive oxygen species and elevation of levels of malondialdehyde, prostaglandin $E_2$, interleukin 6 and glutathione, as well as superoxide dismutase activity. KHG26702 also reduced OGD-R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, KHG26702 reduced OGD-R-induced $A{\beta}$ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that KHG26702 may prevent neuronal cell damage from OGD-R-induced toxicity.

Anti-oxidative Effect of Some Plant Extracts Against Nitric Oxide-induced Oxidative Stress on Neuronal Cell (Nitric oxide에 의해 산화적 스트레스를 받은 Neuronal cell에 항산화 효과를 가지는 수종 생약추출물의 검색)

  • Koo, Uk;Lee, Hak-Ju;Lee, Dong-Ho;Lee, Hyun-Jung;Ham, Ah-Rom;Cho, Eun-Young;Mar, Woong-Chon
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.4
    • /
    • pp.290-294
    • /
    • 2008
  • The objective of this study is screening the anti-oxidative effects of several plant MeOH extracts against oxidative stress in Neuroblastoma cell. Oxidative stress has been implicated in the pathogenesis of many neurotoxicity, neurodegenerative disorders and cell death. This oxidative stress is generated by ROS (Reactive Oxygen Species) such as nitric oxide, nitrogen dioxide, peroxyl, superoxide ($O_2^-$), hydroxyl, alkoxyl. So, in the present study, we induced oxidative stress by treatment of sodium nitroprusside (2.5 mM) in human neuroblastoma SH-SY5Y cell which was treated samples before 24hr, and cell viability was measured by MTT reduction assay. Of those tested, the extracts of Paeonia japonica (roots), Eucommia ulmoides (炒)(barks), Paeonia japonica (曝乾)(roots), Phyllostachys bambusoides (stems), Polygala tenuifolia (去心, 炒)(roots), Paeonia japonica (roots), Polygala tenuifolia (roots), Machilus thunbergii (barks), Mallotus japonicus (leaves), Poria cocos (whole), Sophora flavescens (roots), Angelica tenuissima (roots), Angelica gigas (當歸尾)(roots) showed anti-oxidative effects[$EC_{50}$<15.20 ${\mu}g$/ml(Carnosine:Positive control)]in dose dependent manner.

Neuroprotective Effects of Some Plant Extracts Against Dopamine-induced Oxidative Stress on Neuronal Cell (Dopamine에 의해 산화적 스트레스를 받은 Neuronal Cell에 뇌 보호 효과를 가지는 수종 생약추출물의 검색)

  • Koo, Uk;Lee, Hak-Ju;Lee, Dong-Ho;Lee, Hyun-Jung;Ham, Ah-Rom;Mar, Woong-Chon
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.1
    • /
    • pp.41-45
    • /
    • 2009
  • Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzhemier's disease. Neuropathologically, PD is characterized by the selective loss of dopaminergic neurons. The neuronal toxicity of cytosolic excess dopamine (DA) has been described in many studies using several cell lines. In dopaminergic neurons, cytosolic excess DA is easily oxidized via monoamine oxidase (MAO)-B, tyrosinase or by auto-oxidation to produce neurotoxic metabolites such as DA quinone. So, in the present study, we induced cell death by treatment of DA ($600{\mu}M$) in human neuroblastoma SH-SY5Y cell which was treated samples before 24 hr, and cell viability was measured by fluorescence activated cell sorter (FACs) analysis. Of those tested, the extracts of Poria cocos (赤茯笭)(whole), Gastrodia elata (rhizomes), Eucommia ulmoides (炒)(barks), Syneilesis palmata (whole), Acorus gramineus (rhizomes), Ligustrum japonicum (leaves) showed neuroprotective effects in dose dependent manner.

Antioxidant and Neuroprotective Effects of Gamisoyo-san (가미소요산(加味逍遙散)의 항산화효과(抗酸化效果)및 신경세포(神經細胞) 보호효과(保護效果))

  • Lee, Seung-Han;Lee, Jin-Moo;Cho, Jung-Hoon;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.3
    • /
    • pp.1-13
    • /
    • 2010
  • Purpose: These studies were undertaken to evaluate the anti-oxidative and neuroprotective effects of Gamisoyo-san(GMSYS). Materials and Methods: We studied the antioxidant effects of GMSYS by assessing the DPPH free radical and the ABTS radical cation inhibition activities, the total polyphenolic contents(TPC). To evaluate the effects of GMSYS in the human neuroblastoma cells, we measured the cell viabilities in SH-SY5Y cells treated with GMSYS. Then we observed the protective effects of GMSYS against 6-OHDA induced neurotoxicity in SH-SY5Y cells. To confirm the neuroprotective effects of GMSYS in the primary culture of mesencephalic dopaminergic cells, we counted the TH-immunopositive cells and measured the NO and TNF-$\alpha$ after the treatment of GMSYS and 6-OHDA. Results: The DPPH free radical and the ABTS radical cation inhibition activities were increased in a dose dependent manner and the IC50 were $133.60{\mu}g/m{\ell}$ and $106.20{\mu}g/m{\ell}$, respectively. The TPC was 0.78%. There were no differences between the various concentrations of GMSYS and the control in the cell viability of SH-SY5Y cells. The neuroprotective effects of GMSYS were shown in the co-treatment group at the low concentrations of $25{\mu}g/m{\ell}$ and the post-treatment group at all concentrations. After the treatment of GMSYS and 6-OHDA in the primary culture of dopaminergic cells, the TH-immunopositive cells were significantly increased in $0.2{\mu}g/m{\ell}$ of GMSYS than the 6-OHDA group. The NO and TNF-$\alpha$ were significantly decreased in $0.2{\mu}g/m{\ell}$ of GMSYS than the 6-OHDA group. Conclusions: This study shows that GMSYS has the antioxidant and neuroprotective effects, especially in the mesencephalic dopaminergic cells. We suggest that GMSYS could be useful for the treatment of postmenopausal depression related with the degeneration of dopamine neuron.

Effect of Immature Citrus sunki Peel Extract on Neuronal Cell Death (미성숙 진귤 과피 추출물이 신경세포 사멸에 미치는 영향)

  • Ko, Woon Chul;Lee, Sun Ryung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.144-149
    • /
    • 2015
  • The peel of Citrus sunki exhibits multiple biological activities such as anti-oxidant, anti-inflammation and anti-obesity, but little is known about neurodegeneration-related activities. In this study, we investigated the protective effect of ethanolic extract from both immature and mature Citrus sunki peel on neuronal cell death. Treatment of the neuroblastoma cell line SH-SY5Y with $MPP^+$, an inducer of Parkinson disease model, increased cell death in a dose dependent manner. Increased levels of active caspase-3 and cleaved PARP were detected. Treatment with immature Citrus sunki peel extract significantly reduced $MPP^+$-induced neurotoxicity. Cytoprotection with immature Citrus sunki peel extract was associated with a decrease in caspase-3 activation and PARP cleavage. In contrast, mature Citrus sunki peel extract had no significant effects. These data suggest that immature Citrus sunki peel extract may exert anti-apoptotic effect through the inhibition of caspase-3 signaling pathway on $MPP^+$-induced neuronal cell death.