Browse > Article

Neuroprotective Effects of Some Plant Extracts Against Dopamine-induced Oxidative Stress on Neuronal Cell  

Koo, Uk (Natural Product Research Institute, College of Pharmacy, Seoul National University)
Lee, Hak-Ju (Korea Forest Research Institute)
Lee, Dong-Ho (College of Life sciences & Biotechnology, Korea University)
Lee, Hyun-Jung (Korea Forest Research Institute)
Ham, Ah-Rom (Natural Product Research Institute, College of Pharmacy, Seoul National University)
Mar, Woong-Chon (Natural Product Research Institute, College of Pharmacy, Seoul National University)
Publication Information
Korean Journal of Pharmacognosy / v.40, no.1, 2009 , pp. 41-45 More about this Journal
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzhemier's disease. Neuropathologically, PD is characterized by the selective loss of dopaminergic neurons. The neuronal toxicity of cytosolic excess dopamine (DA) has been described in many studies using several cell lines. In dopaminergic neurons, cytosolic excess DA is easily oxidized via monoamine oxidase (MAO)-B, tyrosinase or by auto-oxidation to produce neurotoxic metabolites such as DA quinone. So, in the present study, we induced cell death by treatment of DA ($600{\mu}M$) in human neuroblastoma SH-SY5Y cell which was treated samples before 24 hr, and cell viability was measured by fluorescence activated cell sorter (FACs) analysis. Of those tested, the extracts of Poria cocos (赤茯笭)(whole), Gastrodia elata (rhizomes), Eucommia ulmoides (炒)(barks), Syneilesis palmata (whole), Acorus gramineus (rhizomes), Ligustrum japonicum (leaves) showed neuroprotective effects in dose dependent manner.
Keywords
Dopamine; Neuroprotective effects; FACs analysis; $EC_{50}$;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Ben-Shachar, D., Zuk, R. and Glinka, Y. (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 64: 718-723   DOI   PUBMED
2 Cavalieri, E. L., Li, K. M., Balu, N., Saeed, M., Devanesan, P., Higginbotham, S., Zhao, J., Gross, M. L. and Rogan, E. G. (2002) Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis 23: 1071-1077   DOI   ScienceOn
3 Xu, Y., Stokes, A. H., Roskoski, R., Jr. and Vrana, K. E. (1998) Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res 54: 691-697   DOI   ScienceOn
4 Castaigne, P., Laplane, D. and Dordain, G. (1971) Clinical experimentation with apomorphine in Parkinson's disease. Res Commun Chem Pathol Pharmacol 2: 154-158   PUBMED
5 Sung, S. H., Kim, E. S., Lee, K. Y., Lee, M. K. and Kim, Y. C. (2006) A new neuroprotective compound of Ligustrum japonicum leaves. Planta Med 72: 62-64   DOI   ScienceOn
6 Jin, F., Wu, Q., Lu, Y. F., Gong, Q. H. and Shi, J. S. (2008) Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats. Eur J Pharmacol 600: 78-82   DOI   PUBMED   ScienceOn
7 Stokes, A. H., Hastings, T. G. and Vrana, K. E. (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55: 659-665   DOI   ScienceOn
8 Cho, J., Joo, N. E., Kong, J. Y., Jeong, D. Y., Lee, K. D. and Kang, B. S. (2000) Inhibition of excitotoxic neuronal death by methanol extract of Acori graminei rhizoma in cultured rat cortical neurons. J Ethnopharmacol 73: 31-37   DOI   ScienceOn
9 Turjanski, N. and Lees, A. J. (1990) Apomorphine in the treatment of Parkinson's disease. Medicina (B Aires) 50: 365-368   PUBMED   ScienceOn
10 Silvestrin, R. B., de Oliveira, L. F., Batassini, C., Oliveira, A. and E. Souza TM (2008) The footfault test as a screening tool in the 6-hydroxydopamine rat model of Parkinson's disease. J Neurosci Methods   DOI   ScienceOn
11 Poewe, W., Kleedorfer, B., Gerstenbrand, F. and Oertel, W. (1988) Subcutaneous apomorphine in Parkinson's disease. Lancet 1: 943   DOI   PUBMED   ScienceOn
12 Junn, E. and Mouradian, M. M. (2001) Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome c and caspases. J Neurochem 78: 374-383   DOI   ScienceOn
13 Sulzer, D. and Zecca, L. (2000) Intraneuronal dopaminequinone synthesis: a review. Neurotox Res 1: 181-195   DOI   ScienceOn
14 Deffond, D., Durif, F. and Tournilhac, M. (1993) Apomorphine in treatment of Parkinson's disease: comparison between subcutaneous and sublingual routes. J Neurol Neurosurg Psychiatry 56: 101-103   DOI   PUBMED
15 Cho, J., Kong, J. Y., Jeong, D. Y., Lee, K. D., Lee, D. U. and Kang, B. S. (2001) NMDA recepter-mediated neuroprotection by essential oils from the rhizomes of Acorus gramineus. Life Sci 68: 1567-1573   DOI   ScienceOn
16 Asanuma, M., Miyazaki, I., Diaz-Corrales, F. J., Miyoshi, K., Ogawa, N. and Murata, M. (2008) Preventing effects of a novel anti-parkinsonian agent zonisamide on dopamine quinone formation. Neurosci Res 60: 106-113   DOI   ScienceOn
17 Smythies, J. and Galzigna, L. (1998) The oxidative metabolism of catecholamines in the brain: a review. Biochim Biophys Acta 1380: 159-162   DOI   PUBMED   ScienceOn
18 Morris, J. K., Zhang, H., Gupte, A. A., Bomhoff, G. L., Stanford, J. A. and Geiger, P. C. (2008) Measures of striatal insulin resistance in a 6-hydroxydopamine model of Parkinson's disease. Brain Res 1240: 185-195   DOI   PUBMED   ScienceOn
19 Tao, G., Irie, Y., Li, D. J. and Keung, W. M. (2005) Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity. Bioorg Med Chem 13: 4777-4788   DOI   ScienceOn