• Title/Summary/Keyword: SF6 gas

Search Result 566, Processing Time 0.025 seconds

Flashover Voltage of 800kV Class Composite Hollow Insulator for $SF_6$ Gas Insulated Switchgear (GIS) (800kV $SF_6$ 가스절연 개폐장치용 (GIS) 복합절연애자 (Composite Hollow Insulator)의 표면오손시 내전압특성)

  • Lee, C.R.;Yoon, J.H.;Choi, B.H.;Yoon, C.Y.;Ko, K.S.;Ban, S.G.;Huh, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1449-1451
    • /
    • 2002
  • A developed 800kV class composite hollow insulator for $SF_6$ Gas Insulated Switchgear (GIS) was tested as to insulation with their surfaces contaminated. The wet power frequency withstand voltage of the silicone rubber housing was about 135kV at an equivalent salt deposite density of $5kg/m^2$, to sufficiently satisfy the required performance. According to IEC 60507, the salt fog withstand voltage was measured at 565kV, and the highest measured leakage current was below 0.2mA. Therefore, it was clarified that the composite hollow insulator has sufficient insulation performance even when it is contaminated on the surface.

  • PDF

The etch characteristics of $ZrO_2$ thin films by using high density plasma (고밀도 플라즈마를 이용한 $ZrO_2$ 박막의 식각특성 연구)

  • Woo, Jong-Chang;Kim, Sang-Gi;Koo, Jin-Gun;Jang, Myoung-Soo;Kang, Jin-Yeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.170-171
    • /
    • 2008
  • The etching characteristics of Zirconium Oxide ($ZrO_2$) and etch selectivity of $ZrO_2$ to Si in HBr/$SF_6$ plasma were investigated. It was found that $ZrO_2$ etch rate shows a non-monotonic behavior with increasing both HBr fraction in $SF_6$ plasma, Source power, Bias Power, gas pressure. The maximum $ZrO_2$ etch rate of 54.8 nm/min was obtained for HBr(25%)/$SF_6$(75%) gas mixture. From these data, the suggestions on the $ZrO_2$ etch characteristics were made.

  • PDF

Analysis on the Mass Loss in Self-blast type $SF_6$ Gas Circuit Breaker (Self-blast형 $SF_6$ 가스 차단기의 노즐용삭 분석)

  • Jeong, Young-Woo;Bae, C.Y.;Ahn, H.S.;Choi, J.W.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1422-1423
    • /
    • 2006
  • In our study, the PTFE nozzle ablation in the high-voltage self-blast type $SF_6$ gas circuit breaker was investigated. The test circuit breaker has the structure that the pin electrode is moving and the pressure reservoir volume and the dimension is almost same as commercial 145kv 40kA circuit breaker for similar result in real circuit breaker. The variation of current and arcing time was the range of $36kA_{rms}$(symmetry) - $40kA_{rms}$(asymmetry) and 10-16 ms. From the measured data the tendecy of the mass loss of the nozzle to current load and arc energy was estimated. In this process, the distance from the arc to nozzle(PTFE) surface, area which was exposed to arc and stroke contour was considered. These results will be used to enhance the accuracy of the computational fluid dynamics analysis in circuit breaker and estimate the residual life time of a circuit breaker.

  • PDF

Development of Model Interrupter of 7.2kV $SF_6$ Gas Electromagnetic Contactor Using Rotary Arc Principle (7.2kV급 로타리아크식 $SF_6$가스 전자접촉기 소호부 개발연구)

  • Chang, K.C.;Shin, Y.J.;Park, K.P.;Chong, J.K.;Kim, J.K.;Kim, G.S.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.30-32
    • /
    • 1995
  • The model interrupters of $SF_6$ gas electromagnetic contactor whose ratings are the voltage of 7.2kV and the short circuit current of 4.0kA have been designed and manufactured on the basis of theoretical and computational analysis for its development. The eddy current analysis, the magnetic field analysis and the calculation of the rotational force on arcs have been conducted using FLUX2D package. The short circuit current interrupting tests have been conducted to the model interrupters using the simplified capacitive synthetic test circuit in KERI. The results show that the model interrupters have a sufficient interrupting capability and the new design concept is proper for a good interrupting performance.

  • PDF

Cold Flow Simulation of $SF_{6}$ Puffer Circuit Breaker

  • Bae, Chae-Yoon;Jung, Hyun-Kyo;Shin, Sang-In;Park, Oh-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.121-128
    • /
    • 2001
  • Numerical schemes for the simulation of the cold gas flow in the SF6 puffer type circuit breaker is presented. The governing equation is axisymmetric compressible Euler Equation and FVM is used to analyze the behavior of flow. The upwind scheme is used to avoid numerical instability and MUSCL is used to obtain high order accuracy. For the efficient calculation, AF-ADI scheme is used. The simulation result shows good agreement with the experimental data.

  • PDF

Study on Decomposition Gas Characteristics and Condition Diagnosis for Gas-Insulated Transformer by Chemical Analysis

  • Kim, Ah-Reum;Kwak, Byeong Sub;Jun, Tae-Hyun;Park, Hyun-Joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2020
  • Since SF6 gas was discovered in the early 1900s, it has been widely used as an insulation material for electrical equipment. While various indicators have been developed to diagnose oil-immersed transformers, there are still insufficient indicators for the diagnosis of gas-insulated transformers. When necessary, chemical diagnostic methods can be used for gas-insulated transformers. However, the field suitability and accuracy of those methods for transformer diagnosis have not been verified. In addition, since various types of decomposition gases are generated therein, it is also necessary to establish appropriate analysis methods to cover the variety of gases. In this study, a gas-insulated transformer was diagnosed through the analysis of decomposition gases. Reliability assessments of both simple analysis methods suitable for on-site tests and precise analysis methods for laboratory level tests were performed. Using these methods, a gas analysis was performed for the internal decomposition gases of a 154 kV transformer in operation. In addition, simulated discharge and thermal fault experiments were demonstrated. Each major decomposition gas generation characteristics was identified. The results showed that an approximate diagnosis of the inside of a gas-insulated transformer is possible by analyzing SO2, SOF2, and CO using simple analysis methods on-site. In addition, since there are differences in the types of decomposition gas generation patterns with various solid materials of the internal transformer, a detailed examination should be performed by using precise analysis methods in the laboratory.

A Study of the Method for External Noise Shielding using the GIS UHF Sensor Module Applied to the Partial Discharge Signal Sensitivity and Method of Frequency Transforming in the Internal GIS (GIS내부의 부분방전신호 감도개선 및 주파수변환기법에 의한 GIS UHF Sensor 모듈의 외부노이즈차폐기법에 관한 연구)

  • Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.728-732
    • /
    • 2010
  • GIS(Gas insulated switching gear) is power equipment with excellent dielectric strength and is economy merit in high confidence and stability. Recently, because equipment of GIS was occurring problem of confidence used for a long time, partial discharge on-line diagnosis systems have been importantly recognized. Partial discharge (PD) detection is an effective means for monitoring and evaluation of dielectric condition of gas insulated system (GIS). The ultra-high-frequency (UHF) PD detection technique can detect and locate the PD sources inside GIS by detecting electromagnetic wave emitted from PD source. Therefore, real-time diagnostic system using UHF detection method has been developed for this application is being expanded gradually. However, the signal of partial discharge occurring in SF6 gas is very weak and susceptible to external noises which mainly consist of PD in air. Thus, it is important to distinguish the PD in SF6 gas more sensitively from the external noises. Unfortunately, these external noise signals and the partial discharge signals have very similar characteristics. Therefore, to solve this problem, we need the signal processing method for distinguish partial discharge signals with external noise signals for improvement of SNR(signal to noise ratio) and sensitivity. In this paper, we proposed internal signal processing method for removing external noise signals with built-in pre.amplifier and frequency conversion circuit.