• Title/Summary/Keyword: SEM-EDX analysis

Search Result 306, Processing Time 0.023 seconds

Photocatalytic Performance of ZnS and TiO2 Supported on AC Under Visible Light Irradiation

  • Meng, Ze-Da;Cho, Sun-Bok;Ghosh, Trisha;Zhu, Lei;Choi, Jong-Geun;Park, Chong-Yeon;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • AC and ZnS modified $TiO_2$ composites (AC/ZnS/$TiO_2$) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/$TiO_2$ composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/$TiO_2$ composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/$TiO_2$ composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/$TiO_2$ composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.

Study on removal method of Brownish black and White crust on Mural in Koguryo Tomb (고구려 고분벽화 오염물질 제거에 관한 연구)

  • Han, Kyeong-Soon;Lim, Kwon-Woong
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.99-108
    • /
    • 2008
  • This research aimed to provide a scientific methodology for removing white and black/brown coloured stains on the wall paintings of tombs of Jinpari No 1 and No 4. in the Democratic People's Republic of Korea. For the analysis of chemical composition of stains of the samples from the wall paintings, a microscope and SEM/EDX were used. The analysis confirmed that the fomula of white coloured stains should be $CaSO_4$ or $CaCO_3$ and the black/brown coloured stains should be $CaSO_4$ or $CaCO_3$ with soil deposition. Because of the difficulties of testing several cleaning solutions on sample patches of large area of the painting, the author considered a risk-free cleaning solution as being the most appropriate one, with Ammonium bicarbonate and Anion exchange resin showing satisfactory cleaning effect without visible side effects. For the removal of dense layer of stains, the research suggested that physical cleaning should be followed by applying a cleaning solution.

  • PDF

A Study on the Judgment of Fire Cause of Ballast for Fluorescent Lamp (형광등용 안정기의 화재원인 판정에 관한 연구)

  • 최충석;백동현
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.1-5
    • /
    • 2000
  • In this paper, we analyzed the fire hazard of the ballast for fluorescent lamp used as the indoor lighting. In the result of being analyzed the ballast wire by stereo microscope, many melting points were discovered, it was impossible to judge a cause with the naked eye. In the Thermal-deteriorated ballast wire, elongation structure disappeared at above $700^{\circ}$, and it only showed the enlarged appearance of the copper particle. On the metallurgical microscope of short wire, as it was confirmed the regulation of the columnar structure and the void growth at the center of boundary-face, we found that electrical short-circuit generated. Also, it was confirmed the melted part on the analysis using SEM(scanning electron microscope). Not only CuL and Cuk line that is composition factor of copper but also OK line was observed uniformly on the spectra analysis using EDX(energy dispersive x-ray spectroscopy). It means that oxygen took part in reaction at the recombination process.

  • PDF

Microstructural Investigations of $Al_2O_3$ Scale Formed on FeCrAl Steel during High Temperature Oxidation in $SO_2$

  • Homa, M.;Zurek, Z.;Morgiel, B.;Zieba, P.;Wojewoda, J.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.139-144
    • /
    • 2008
  • The results of microstructure observations of the $Al_2O_3$ scale formed on a Fe-Cr-Al steel during high temperature oxidation in the $SO_2$ atmosphere are presented. Morphology of the scale has been studied by SEM and TEM techniques. Phase and chemical compositions have been studied by EDX and XRD techniques. The alumina oxide is a primary component of the scale. TEM observations showed that the scale was multilayer. The entire surface of the scale is covered with "whiskers", which look like very thin platelets and have random orientation. The cross section of a sample shows, that the "whiskers" are approximately $2{\mu}m$ high, however the compact scale layer on which they reside is $0.2{\mu}m$ thick. The scale layer was composed mainly of small equiaxial grains and a residual amount of small columnar grains. EDX analysis of the scale surface showed that the any sulfides were found in the formed outer and thin inner scale layer. A phase analysis of the scale formed revealed that it is composed mainly of the $\theta-Al_2O_3$ phase and a residual amount of $\alpha-Al_2O_3$.

Microscopical and chemical surface characterization of CAD/CAM zircona abutments after different cleaning procedures. A qualitative analysis

  • Gehrke, Peter;Tabellion, Astrid;Fischer, Carsten
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • PURPOSE. To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. MATERIALS AND METHODS. A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non- quantitatively. RESULTS. All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. CONCLUSION. The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented.

Preparation of Fabric Softener Product by using Amine-functionalized Magnesium-phyllosilicates (아민기로 관능화된 마그네슘-층상규산염을 이용한 섬유유연제 제조)

  • Kim, Seong Yeol;Choi, Yoo-Sung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.580-585
    • /
    • 2019
  • In this study, we synthesized amine-functionalized magnesium-phyllosilicates (AF-MgP) with an octahedral and tetrahedral structure using (3-aminopropyl)triethoxysilane. The synthesis of AF-MgP, surface functionalization of amine and 1 : 2 ratio of the octahedral and tetrahedral structure were confirmed by FT-IR and XRD analysis. In addition, it was confirmed that AF-MgP was absorbed evenly on the surface of cotton fibers and coated on the cotton fibers from HR-SEM and EDX analysis. The antimicrobial activity test of cotton fibers according to KS confirmed that cotton fibers coated with AF-MgP particles show an enhanced antimicrobial activity against cutaneous microorganisms. Our results suggest that AF-MgP is not only applied as a functional nanomaterial that gives the cotton fiber antimicrobiality, but also can be used in the field of cosmetic and biomedical materials.

Luminescence properties and compositions of contaminating inorganic minerals separated from gamma-irradiated fresh and white ginsengs from different areas

  • Ahn, Jae-Jun;Akram, Kashif;Jeong, Mi-Seon;Kwak, Ji-Young;Park, Eun-Joo;Kwon, Joong-Ho
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.483-490
    • /
    • 2013
  • Gamma-irradiation (0-7 kGy) of ginseng is permitted in Korea for the purpose of microbial decontamination; with strict labeling, traceability and monitoring requirements. An identification study was conducted to determine the photostimulated-luminescence (PSL) and thermoluminescence (TL) properties of gamma-irradiated fresh and white ginsengs cultivated in different areas. Dose- dependent PSL-based screening was possible for white ginseng samples; however, inappropriate results from non-irradiated fresh ginseng samples were obtained, showing intermediate (700 to 5,000) or positive ($T_2$ >5,000, irradiated) PSL counts due to the abundance of minerals on the surfaces of the samples. TL analysis of separated minerals from all non-irradiated samples gave TL glow curves of low intensity with a maximum peak after $300^{\circ}C$. However, well-defined irradiation-specific (high intensity with a maximum peak at about $200^{\circ}C$) glow curves were observed for all the irradiated samples, regardless of their type and origins. TL ratios (first glow curve /second glow curve) were also determined to confirm the irradiated (>0.1) and non-irradiated (<0.1) results. SEM-EDX (scanning electron microscope-energy dispersive X-ray) and XRD (X-ray diffraction) spectroscopic analyses showed that feldspar and quartz minerals were the main source for the typical radiation-specific luminescence properties.

Corrosion Inhibition Performance of Two Ketene Dithioacetal Derivatives for Stainless Steel in Hydrochloric Acid Solution

  • Lemallem, Salah Eddine;Fiala, Abdelali;Ladouani, Hayet Brahim;Allal, Hamza
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.237-253
    • /
    • 2022
  • The methyl 2-(1,3-dithietan -2- ylidene)-3-oxobutanoate (MDYO) and 2-(1,3-dithietan-2-ylidene) cyclohexane -1,3-dione (DYCD) were synthesized and tested at various concentrations as corrosion inhibitors for 316L stainless steel in 1 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface analysis techniques (SEM / EDX and Raman spectroscopy) and Functional Density Theory (DFT) was also used to calculate quantum parameters. The obtained results indicated that the inhibition efficiency of MDYO and DYCD increases with their concentration, and the highest value of corrosion inhibition efficiency was determined in the range of concentrations investigated (0.01 × 10-3 - 10-3 M). Polarization curves (Tafel extrapolation) showed that both compounds act as mixed-type inhibitors in 1M HCl solutions. Electrochemical impedance spectra (Nyquist plots) are characterized by a capacitive loop observed at high frequencies, and another small inductive loop near low frequencies. The thermodynamic data of adsorption of the two compounds on the stainless steel surface and the activation energies were determined and then discussed. Analysis of experimental results shows that MDYO and DYCD inhibitors adsorb to the metal surface according to the Langmuir model and the mechanism of adsorption of both inhibitors involves physisorption. SEM-EDX results confirm the existence of an inhibitor protective film on the stainless steel surface. The results derived from theoretical calculations supported the experimental observation.

Characterization of coated colorless synthetic moissanite (코팅된 무색 합성 모이사나이트의 특징)

  • Choi, Hyunmin;Kim, Youngchool;Jang, Hansoo;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 2022
  • Recently, Hanmi Gemological Institute & Laboratory (HGI) had an opportunity to examine 5 transparent synthetic moissanite. The round brilliants ranged from 0.93 to 0.96 ct and had a colorless, pink, yellow, blue, and red color. Advanced testing results, including Fourier-transform infrared (FTIR) and Raman spectroscopy, identified all the specimens as synthetic moissanite. Under the microscope, all samples except the colorless were confirmed to be a synthetic moissanite coated with a colored film. EDXRF chemical analysis detected very weak X-ray fluorescence peak characteristics of Ca, Ti, and Co in the colored samples. These features were not detected in the colorless sample. Raman spectroscopy investigation was unable to detect the 1332 cm-1 (produced by sp3 bonding of carbon atoms) or the ~1550 cm-1 (produced by graphite-related sp2 bonding) peak in the colorless sample. The SEM image of the colorless sample showed no indication of a coating. The TEM image of the colorless sample revealed the presence of a 3~8 nm thick layer on the moissanite. Moreover, from the corresponding STEM Z-contrast image combined with the energy-dispersive X-ray spectroscopy (EDX) line profiles and EDX elemental maps, this layer was estimated to be carbon, silicon and oxygen.

Comparative Analysis of the Physical Properties and Photocatalytic Effects for C/TiO2 Complexes Derived from Titanium n-butoxide

  • Oh, Won-Chun;Park, Tong-So
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.218-223
    • /
    • 2007
  • The hybrid $C/TiO_2$ complexes were prepared by a method involving the penetration of titanium n-butoxide (TNB) solution with porous carbons. The photocatalysts were investigated for their surface textural properties and SEM morphology, structural crystallinity and elemental identification between porous carbon and $TiO_2$, and dye decomposition performance. For all the $C/TiO_2$ complexes prepared by TNB solution methods, the excellent photocatalytic effect for dye degradation should be attributed to the synergitic effects between photo-decomposition of the supported $TiO_2$ and adsorptivity of the porous carbons.