Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.2.91

Photocatalytic Performance of ZnS and TiO2 Supported on AC Under Visible Light Irradiation  

Meng, Ze-Da (Department of Advanced Materials Science & Engineering, Hanseo University)
Cho, Sun-Bok (Department of Advanced Materials Science & Engineering, Hanseo University)
Ghosh, Trisha (Department of Advanced Materials Science & Engineering, Hanseo University)
Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University)
Choi, Jong-Geun (Department of Advanced Materials Science & Engineering, Hanseo University)
Park, Chong-Yeon (Department of Advanced Materials Science & Engineering, Hanseo University)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.22, no.2, 2012 , pp. 91-96 More about this Journal
Abstract
AC and ZnS modified $TiO_2$ composites (AC/ZnS/$TiO_2$) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/$TiO_2$ composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/$TiO_2$ composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/$TiO_2$ composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/$TiO_2$ composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.
Keywords
ZnS; $TiO_2$; visible light; UV-Vis; Rh.B;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 T. Torimoto, S. Ito, S. Kuwabata and H. Yoneyama, Environ. Sci. Tech., 30, 1275 (1996).   DOI   ScienceOn
2 J. Arana, J. M. Dona-Rodriguez, E. T. Rendon, C. G. i Cabo, O. Gonzalez-Diaz, J. A. Herrera-Melian, J. Perez-Pena, G. Colon and J. A. Navio, Appl. Catal. B Environ., 44, 153 (2003).   DOI   ScienceOn
3 X. Zhang and L. Lei, J. Hazard. Mater., 153, 827 (2008).   DOI   ScienceOn
4 C. Han, Z. Li and J. Shen, J. Hazard. Mater., 168, 215 (2009).   DOI   ScienceOn
5 X. Zhang, M. Zhou and L. Lei, Carbon, 43, 1700 (2005).   DOI   ScienceOn
6 C. C. Chan, C. C. Chang, W. C. Hsu, S. K. Wang and J. Lin, Chem. Eng. J., 152, 492 (2009)   DOI   ScienceOn
7 F. J. Zhang, M. L. Chen, K. Zhang and W. C. Oh, Bull. Korean Chem. Soc., 31, 133 (2010).   DOI   ScienceOn
8 F. J. Zhang, J. Liu, M. L. Chen and W. C. Oh, J. Korean Ceram. Soc. 46, 263 (2009).   DOI   ScienceOn
9 J. Yang, H. Bai, Q. Jiang and J. Lian, Thin Solid Films, 516, 1736 (2008).   DOI   ScienceOn
10 X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang and K. Klabunde, J. Catal., 260, 128 (2008).   DOI   ScienceOn
11 M. Lei, Y. B. Zhang, X. L. Fu, Y. T. Huang, L. Zhang and J. H. Xiao, Mater. Lett., 65, 3577 (2011).   DOI   ScienceOn
12 I. Tsuji, H. Kato and A. Kudo, Angew. Chem. Int. Ed., 44, 3565 (2005).   DOI   ScienceOn
13 Y. Li, G. Chen, C. Zhou and J. Sun, Chem. Comm., 15, 2020 (2009).
14 N. Kakuta, K. H. Park, M. F. Finlayson, A. Ueno, A. J. Bard, A. Campion, M. A. Fox, S. E. Webber and J. M. White, J. Phys. Chem., 89, 732 (1985).   DOI
15 Z. D. Meng, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, Nanoscale Res. Lett., 6, 459 (2011).   DOI   ScienceOn
16 M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).   DOI   ScienceOn
17 M. Asilturk, F. Sayllkan and E. Arpac, J. Photochem. Photobiol. Chem., 203, 64 (2009).   DOI   ScienceOn
18 M. Andersson, L. Osterlund, S. Ljungstrom and A. Palmqvist, J. Phys. Chem. B, 106, 10674 (2002).   DOI   ScienceOn
19 Z. D. Meng, M. L. Chen, F. J. Zhang, L. Zhu, J. G. Choi and W. C. Oh, Asian J. Chem. 23, 2327 (2011).
20 H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 104, 4585 (2000).   DOI   ScienceOn
21 T. Mori, J. Suzudi, K. Fujimoto, M. Watanabe and Y. Hasegawa, Appl. Catal. B Environ., 23, 283 (1999).   DOI   ScienceOn
22 T. Wang, H. Wang, P. Xu, X. Zhao, Y. Liu and S. Chao, Thin Solid Films, 334, 103 (1998).   DOI   ScienceOn
23 Z. D. Meng and W. C. Oh, Ultrason. Sonochem., 18, 757 (2011).   DOI   ScienceOn
24 V. Stengl, S. Bakardjieva, N. Murafa, V. Houskova and K. Lang, Microporous Mesoporous Mater., 110, 370 (2008).   DOI   ScienceOn
25 Z. Zhou, D. He, W. Xu, F. Ren and Y. Qian, Mater. Lett., 61, 4500 (2007).   DOI   ScienceOn
26 L. Zhang and L. Yang, Cryst. Res. Tech., 43, 1022 (2008).   DOI   ScienceOn
27 Z. D. Meng, J. G. Choi, J. Y. Park, L. Zhu and W. C. Oh, J. Photo. Sci., 2, 27 (2011).
28 Y. Li, S. Peng, F. Jiang, G. Lu and S. Li, J. Serb. Chem. Soc., 72, 393 (2007).   DOI   ScienceOn
29 J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan and C. L. Bai, Angew. Chem. Int. Ed., 44, 1269 (2005).   DOI   ScienceOn
30 G. C. De, A. M. Roy and S. S. Bhattacharya, Int. J. Hydrogen Energ., 21, 19 (1996).   DOI   ScienceOn
31 A. M. Roy and G. C. De, J. Photochem. Photobiol. Chem., 157, 87 (2003).   DOI   ScienceOn
32 K. Zhang, D. Jing, Q. Chen and L. Guo, Int. J. Hydrogen Energ., 35, 2048 (2010).   DOI   ScienceOn
33 N. Uzar, S. Okur and M. C. Arikan, Sensor. Actuator. Phys., 167, 188 (2011).   DOI   ScienceOn
34 Z. D. Meng, K. Y. Cho and W. C. Oh, Asian J. Chem., 23, 847 (2011).
35 N. N. Lichtin, M. Avudaithai, E. Berman and A. Grayfer, Sol. Energ., 56, 377 (1996).   DOI   ScienceOn
36 C. Minero, E. Pelizzetti, S. Malato and J. Blanco, Sol. Energ., 56, 411 (1996).   DOI   ScienceOn
37 Z. D. Meng, L. Zhu, J. G. Choi, M. L. Chen and W. C. Oh, J. Mater. Chem., 21, 7596 (2011).   DOI   ScienceOn
38 W. C. Oh and F. J. Zhang, J. Photo. Sci., 1, 63 (2010).
39 Y. Li and F. Wasgestian, J. Photochem. Photobiol. Chem., 112, 255 (1998),   DOI   ScienceOn
40 K. T. Ranjit, R. Krishnamoorthy and B. Viswanathan, J. Photochem. Photobiol. Chem., 81, 55 (1994).   DOI   ScienceOn
41 T. Huang, X. Lin, J. Xing, W. Wang, Z. Shan and F. Huang, Mater. Sci. Eng. B, 141, 49 (2007).   DOI   ScienceOn
42 J. F. Porter, Y. G. Li and C. K. Chan, J. Mater. Sci., 34, 1523 (1999).   DOI   ScienceOn
43 A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C Photochem. Rev., 1, 1 (2000).   DOI   ScienceOn
44 Z. D. Meng, K. Zhang and W. C. Oh, Kor. J. Mater. Res., 20, 228 (2010).   DOI   ScienceOn
45 W. Xie, Y. Li, W. Sun, J. Huang H. Xie and X. Zhao, J. Photochem. Photobiol. Chem., 216, 149 (2010).   DOI   ScienceOn