Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00822

Corrosion Inhibition Performance of Two Ketene Dithioacetal Derivatives for Stainless Steel in Hydrochloric Acid Solution  

Lemallem, Salah Eddine (Chemistry Research Unit Environmental and Structural Molecular CHEMS. Mentouri Brothers Constantine 1 University)
Fiala, Abdelali (Chemistry Research Unit Environmental and Structural Molecular CHEMS. Mentouri Brothers Constantine 1 University)
Ladouani, Hayet Brahim (Chemistry Research Unit Environmental and Structural Molecular CHEMS. Mentouri Brothers Constantine 1 University)
Allal, Hamza (Department of Technology, Faculty of Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 237-253 More about this Journal
Abstract
The methyl 2-(1,3-dithietan -2- ylidene)-3-oxobutanoate (MDYO) and 2-(1,3-dithietan-2-ylidene) cyclohexane -1,3-dione (DYCD) were synthesized and tested at various concentrations as corrosion inhibitors for 316L stainless steel in 1 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface analysis techniques (SEM / EDX and Raman spectroscopy) and Functional Density Theory (DFT) was also used to calculate quantum parameters. The obtained results indicated that the inhibition efficiency of MDYO and DYCD increases with their concentration, and the highest value of corrosion inhibition efficiency was determined in the range of concentrations investigated (0.01 × 10-3 - 10-3 M). Polarization curves (Tafel extrapolation) showed that both compounds act as mixed-type inhibitors in 1M HCl solutions. Electrochemical impedance spectra (Nyquist plots) are characterized by a capacitive loop observed at high frequencies, and another small inductive loop near low frequencies. The thermodynamic data of adsorption of the two compounds on the stainless steel surface and the activation energies were determined and then discussed. Analysis of experimental results shows that MDYO and DYCD inhibitors adsorb to the metal surface according to the Langmuir model and the mechanism of adsorption of both inhibitors involves physisorption. SEM-EDX results confirm the existence of an inhibitor protective film on the stainless steel surface. The results derived from theoretical calculations supported the experimental observation.
Keywords
Corrosion Inhibition; Ketene Dithioacetal Derivatives; Stainless Steel; Hydrochloric Acid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Salhi, S. Tighadouini, M. El-Massaoudi, M. Elbelghiti, A. Bouyanzer, S. Radi, S. El Barkany, F. Bentiss, A. Zarrouk, J. Mol. Liq., 2017, 248, 340-349.   DOI
2 L. Zhou, Y.L. Lv, Y.X. Hu, J.H. Zhao, X. Xia, X. Li, J. Mol. Liq., 2018, 249, 179-187.   DOI
3 M. El Azzouzi, A. Aouniti, S. Tighadouin, H. Elmsellem, S. Radi, B. Hammouti, A.El Assyry, F. Bentiss, A. Zarrouk, J. Mol. Liq., 2016, 221, 633-641.   DOI
4 M.A. Amin, S.S. Abd El-Rehim, E.E.F. El-Sherbini, O.A. Hazzazi, M.N. Abbas, Corros. Sci., 2009, 51(3), 658-667.   DOI
5 M. A. Amin , S. S. Abd El Rehim , H. T.M. Abdel-Fatah, Corros. Sci., 2009, 51(4), 882- 894.   DOI
6 S. Martinez, I. Stern, Appl. Surf. Sci., 2002, 199(1-4), 83-89.   DOI
7 L.L. Liano, S. Mo, H.Q. Luo, N.B. Li, J. Colloid Interface Sci., 2017, 499, 110-119.   DOI
8 P. Mourya, P. Singh, A.K. Tewari, R.B. Rastogi, M.M. Singh, Corros. Sci., 2015, 95, 71-87.   DOI
9 A. Singh, K.R. Ansari, A. Kumar, W. Liu, C. Songsong, J. Alloys Compd., 2017, 712, 121-133.   DOI
10 R.G. Parr, R.G. Pearson, J. Am. Chem. Soc., 1983, 105(26), 7512-7516.   DOI
11 H.Wang , X. Wang, H.Wang, L.Wang, A. Liu, J. Mol Model., 2007, 13, 147-153.   DOI
12 K. Ramya, R. Mohan, A. Joseph, J. Taiwan. Inst. Chem. Eng., 2014, 45(6), 3021-3032.   DOI
13 I.B. Obot, D.D. Macdonald, Z.M. Gasem, Corros Sci., 2015, 99, 1-30.   DOI
14 H. Gerengi, H.I. Ugras, M.M. Solomon, S.A. Umoren, M. Kurtay, N. Atar, J. Adhes. Sci. Technol., 2016, 30(21), 2383-2403.   DOI
15 B. P. Markhali, R. Naderi b, M. Mahdavian, M. Sayebani, S.Y. Arman, Corros. Sci., 2013, 75, 269-279.   DOI
16 F. Neese, Software update: the ORCA program system, version 4.0, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(1), e1327.   DOI
17 E. Gutierrez, J.A. Rodriguez, J. Cruz-Borbolla, J.G. Alvarado-Rodriguez, P. Thangarasu, Corros. Sci., 2016, 108, 23-25.   DOI
18 P. Colomban, S. Cherifi, G. Despert, J. Raman Spectrosc., 2008, 39(7), 881-886.   DOI
19 D. Costa, P. Marcus, Molecular modeling of corrosion processes scientific development and engineering applications. Wiley, New Jersey, 2015, 125-156.
20 M. Finsgar, A. Lesar, A. Kokalj, I. Milosev, Electrochim. Acta., 2008, 53(28), 8287-8297.   DOI
21 Z. El Adnani, M. Mcharfi, M. Sfaira , M. Benzakour, A. Benjelloun, M.E. Touhami, Corros. Sci., 2013, 68, 223-230.   DOI
22 S. Vikneshvaran , S. Velmathi, Surf. Interfaces., 2017, 6, 134-142.   DOI
23 M. P. Bosch, F. Camps, J. Coll, A. Guerrero, T. Tatsuoka, J. Meinwald, J. Org. Chem., 1986, 51(6), 773-784.   DOI
24 O. Sanni, A.P.I. Popoola, O.S.I. Fayomi, J. Bio. Tribo Corros., 2019, 5(4), 1-8.   DOI
25 S.A. Abd El-Maksoud, Int. J. Electrochem. Sci., 2008, 3(5), 528-555.   DOI
26 R. Fuchs-Godec, M.G. Pavlovic, Corros. Sci., 2012, 58, 192-201.   DOI
27 N. Caliskan, E. Akbas, Mater. Chem. Phys., 2011, 126(3), 983-988.   DOI
28 M. Behpour, S.M. Ghoreishi, N. Mohammadi, M. Salavati-Niasari, Corros. Sci., 2011, 53(10), 3380-3387.   DOI
29 A. Fiala, W. Boukhedena, S.E. Lemallem, H. Brahim Ladouani, H. Allal, J. Bio. Tribo Corros., 2019, 5(2), 1-17.   DOI
30 M. D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, J. Cheminform., 2012, 4, 17.   DOI
31 T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett., 2004, 393(1-3), 51-57.   DOI
32 R.G. Pearson, Inorg. Chem., 1988, 27(4), 734-740.   DOI
33 M. Yadav, R.R. Sinha, S. Kumar, I. Bahadur, E.E. Ebenso, J. Mol. Liq., 2015, 208, 322-332.   DOI
34 A. Bousskri, A. Anejjar, M. Messali, R. Salghi, O. Benali, Y. Karzazi, S. Jodeh, M. Zougagh, E.E. Ebenso, B. Hammouti, J. Mol. Liq., 2015, 211, 1000-1008.   DOI
35 B. Xu, Y. Liu, X. Yin, W. Yong, Y. Chen, Corros Sci., 2013, 74, 206-213.   DOI
36 S.S. Abd El Rehim, M. A.M. Ibrahim, K.F. Khalid, Mater. Chem. Phys., 2001, 70(3), 268- 273.   DOI
37 E. McCafferty, Corros. Sci., 2005, 47(12), 3202-3215.   DOI
38 Y. Sasikumar, A.S. Adekunle, L.O. Olasunkanmi, I. Bahadur, R.Baskar, M.M. Kabanda, I.B. Obot, E.E. Ebenso, J. Mol. Liq., 2015, 211, 105-118.   DOI
39 I. benhammed, T. Douadi, S. Issaadi, M. Al-Noaimi, S. Chafaa, J. Dispers. Sci. Technol., 2020, 41(7), 1001-1021.
40 M.A. Amin, M. M. Ibrahim, Corros. Sci., 2011, 53(3), 873-885.   DOI
41 M. Mahdavian, M. Attar, Corros. Sci., 2009, 51(2), 409-414.   DOI
42 G. Quartarone, T. Bellomi, A. Zingales, Corros. Sci., 2003, 45(4), 715-733.   DOI
43 D. Landolt, Corrosion et Chimie de Surface des Metaux, 1st Edition. Alden Press, Oxford, 1993.
44 G.M. Schmid, H.J. Huang, Corros. Sci., 1980, 20(8-9), 1041-1057.   DOI
45 E. J. Corey, D. J. Beames, J. Am. Chem. Soc., 1973, 95(17), 5829-5831.   DOI
46 E.E. Ebenso, D.A. Isabirye, N.O. Eddy, Int. J. Mol Sci., 2010, 11(6), 2473-2498.   DOI
47 N. Shet , R. Nazareth , P.A. Suchetan, Chem. Data Coll., 2019, 20, 100209.
48 N.T. Thomas, K. Nobe, J. Electrochem. Soc., 1972, 119(11), 1450-1456.   DOI
49 B. Ait Addi, B. El Ibrahimi, A. Ait Addi, A. Shaban, E. Ait Addi, M. Hamdani, Electroanalysis., 2021, 33(3), 804-819.   DOI
50 P. Leena, Z. Hukuman N. H., A. R. Biju and M. Jisha, J. Electrochem. Sci. Technol., 2019, 10(2), 231-243.   DOI
51 X. Li, S. Deng, H. Fu, Corros. Sci., 2011, 53(1), 302-309.   DOI
52 X. Li, S. Deng, T. Lin, X. Xie, X. Xu, J. Mol. Liq., 2019, 274, 77-89.   DOI
53 H. Heydari, M. Talebian, Z. Salarvand, K. Raeissi, J. Mol. Liq., 2018, 254, 177-187.   DOI
54 P. Geethamani, P.K. Kasthuri, J. Taiwan. Inst. Chem. Eng., 2016, 63, 490-499.   DOI
55 A.K. Singh, P. Singh, J. Ind. Eng. Chem., 2015, 21, 552-560.   DOI
56 H. Hamani, T. Douadi, M. Al-Noaimi, S. Issaadi, D. Daoud, S. Chafaa, Corros. Sci., 2014, 88, 234-245.   DOI
57 A.K. Singh, S. Mohapatra, B. Pani, J. Ind. Eng. Chem., 2016, 33, 288-297.   DOI
58 L. Bellot-Gurlet, D. Neff, S. Reguer, J. Monnier, M. Saheb, P. Dillmann, J. Nano Res., 2009, 8, 147-156.   DOI
59 A.G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P.R. Mudimela, S.D. Shandakov, and et al, Nano Res., 2009, 2, 373-379.   DOI
60 A.S. Fouda, G.Y. El-Ewady, S. Fathy, Desalin. Water Treat., 2013, 51(10-12), 2202-2213.   DOI
61 R. Herle, S.D. Shetty, U.A. Kini, P. Shetty, Chem. Eng. Comm., 2011, 198(1), 120-130.   DOI
62 M. Behpour, S.M. Ghoreishi, N. Soltani, M. Salavati-Niasari, Corros. Sci., 2009, 51(5), 1073-1082.   DOI
63 A. Fiala, A. Chibani, A. Darchen, A. Boulkamh, K. Djebbar, Appl. Surf. Sci., 2007, 253(24), 9347-9356.   DOI
64 B. Negroni, A. Botrel, M. Herail, A. Proutiere, J. Mol. Struct., 1997, 405(2-3), 133-138.   DOI
65 F. Neese, The ORCA program system, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2(1), 73-78.   DOI
66 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.   DOI
67 N.A.F. Al-Rawashdeh, A.S. Alshamsi, S. Hisaindee, J. Graham, N. Al Shamisi, Int. J. Electrochem. Sci., 2017, 12, 8535-8551.   DOI
68 T.Y. Nikolaienko, L. A. Bulavin, D. M. Hovorun, Theor. Chem., 2014, 1050, 15-22.   DOI
69 M. Rbaa, B. Lakhrissi, Surf. Interfaces., 2019, 15, 43-59.   DOI
70 Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, S. Meghdadi, Corros. Sci., 2017, 114, 133-145.   DOI
71 M. El Faydya, M. Rbaaa, L. Lakhrissia, B. Lakhrissia, I. Waradb, A. Zarroukc, I. B. Obot, Surf. Interfaces., 2019, 14, 222-237.   DOI
72 D. Daoud, T. Douadi, H. Hamani, S. Chafaa, M. Al- Noaimi, Corros. Sci., 2015, 94, 21-37.   DOI
73 S. Bashir, V. Sharma, H. Lgaz, I.M. Chung, A. Singh, A. Kumar, J. Mol. Liq., 2018, 263, 454-462.   DOI
74 R. Solmaz, Corros. Sci., 2014, 79, 169-176.   DOI
75 R. Solmaz , G. Kardas, M. Culha, B. Yazici, M. Erbil, Electrochim. Acta., 2008, 53(20), 5941-5952.   DOI