DOI QR코드

DOI QR Code

Corrosion Inhibition Performance of Two Ketene Dithioacetal Derivatives for Stainless Steel in Hydrochloric Acid Solution

  • Lemallem, Salah Eddine (Chemistry Research Unit Environmental and Structural Molecular CHEMS. Mentouri Brothers Constantine 1 University) ;
  • Fiala, Abdelali (Chemistry Research Unit Environmental and Structural Molecular CHEMS. Mentouri Brothers Constantine 1 University) ;
  • Ladouani, Hayet Brahim (Chemistry Research Unit Environmental and Structural Molecular CHEMS. Mentouri Brothers Constantine 1 University) ;
  • Allal, Hamza (Department of Technology, Faculty of Technology)
  • Received : 2021.08.19
  • Accepted : 2021.11.01
  • Published : 2022.05.28

Abstract

The methyl 2-(1,3-dithietan -2- ylidene)-3-oxobutanoate (MDYO) and 2-(1,3-dithietan-2-ylidene) cyclohexane -1,3-dione (DYCD) were synthesized and tested at various concentrations as corrosion inhibitors for 316L stainless steel in 1 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface analysis techniques (SEM / EDX and Raman spectroscopy) and Functional Density Theory (DFT) was also used to calculate quantum parameters. The obtained results indicated that the inhibition efficiency of MDYO and DYCD increases with their concentration, and the highest value of corrosion inhibition efficiency was determined in the range of concentrations investigated (0.01 × 10-3 - 10-3 M). Polarization curves (Tafel extrapolation) showed that both compounds act as mixed-type inhibitors in 1M HCl solutions. Electrochemical impedance spectra (Nyquist plots) are characterized by a capacitive loop observed at high frequencies, and another small inductive loop near low frequencies. The thermodynamic data of adsorption of the two compounds on the stainless steel surface and the activation energies were determined and then discussed. Analysis of experimental results shows that MDYO and DYCD inhibitors adsorb to the metal surface according to the Langmuir model and the mechanism of adsorption of both inhibitors involves physisorption. SEM-EDX results confirm the existence of an inhibitor protective film on the stainless steel surface. The results derived from theoretical calculations supported the experimental observation.

Keywords

References

  1. S.A. Abd El-Maksoud, Int. J. Electrochem. Sci., 2008, 3(5), 528-555. https://doi.org/10.1016/S1452-3981(23)15542-8
  2. R. Fuchs-Godec, M.G. Pavlovic, Corros. Sci., 2012, 58, 192-201. https://doi.org/10.1016/j.corsci.2012.01.027
  3. N. Caliskan, E. Akbas, Mater. Chem. Phys., 2011, 126(3), 983-988. https://doi.org/10.1016/j.matchemphys.2010.11.051
  4. E. J. Corey, D. J. Beames, J. Am. Chem. Soc., 1973, 95(17), 5829-5831. https://doi.org/10.1021/ja00798a100
  5. M. P. Bosch, F. Camps, J. Coll, A. Guerrero, T. Tatsuoka, J. Meinwald, J. Org. Chem., 1986, 51(6), 773-784. https://doi.org/10.1021/jo00356a002
  6. N. Shet , R. Nazareth , P.A. Suchetan, Chem. Data Coll., 2019, 20, 100209.
  7. N.A.F. Al-Rawashdeh, A.S. Alshamsi, S. Hisaindee, J. Graham, N. Al Shamisi, Int. J. Electrochem. Sci., 2017, 12, 8535-8551. https://doi.org/10.20964/2017.09.53
  8. S. Vikneshvaran , S. Velmathi, Surf. Interfaces., 2017, 6, 134-142. https://doi.org/10.1016/j.surfin.2017.01.001
  9. A.S. Fouda, G.Y. El-Ewady, S. Fathy, Desalin. Water Treat., 2013, 51(10-12), 2202-2213. https://doi.org/10.1080/19443994.2012.734730
  10. R. Herle, S.D. Shetty, U.A. Kini, P. Shetty, Chem. Eng. Comm., 2011, 198(1), 120-130. https://doi.org/10.1080/00986445.2010.499838
  11. M. Behpour, S.M. Ghoreishi, N. Mohammadi, M. Salavati-Niasari, Corros. Sci., 2011, 53(10), 3380-3387. https://doi.org/10.1016/j.corsci.2011.06.017
  12. M. Behpour, S.M. Ghoreishi, N. Soltani, M. Salavati-Niasari, Corros. Sci., 2009, 51(5), 1073-1082. https://doi.org/10.1016/j.corsci.2009.02.011
  13. B. P. Markhali, R. Naderi b, M. Mahdavian, M. Sayebani, S.Y. Arman, Corros. Sci., 2013, 75, 269-279. https://doi.org/10.1016/j.corsci.2013.06.010
  14. A. Fiala, W. Boukhedena, S.E. Lemallem, H. Brahim Ladouani, H. Allal, J. Bio. Tribo Corros., 2019, 5(2), 1-17. https://doi.org/10.1007/s40735-018-0196-2
  15. A. Fiala, A. Chibani, A. Darchen, A. Boulkamh, K. Djebbar, Appl. Surf. Sci., 2007, 253(24), 9347-9356. https://doi.org/10.1016/j.apsusc.2007.05.066
  16. B. Negroni, A. Botrel, M. Herail, A. Proutiere, J. Mol. Struct., 1997, 405(2-3), 133-138. https://doi.org/10.1016/S0022-2860(96)09603-2
  17. M. D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, J. Cheminform., 2012, 4, 17. https://doi.org/10.1186/1758-2946-4-17
  18. F. Neese, Software update: the ORCA program system, version 4.0, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(1), e1327. https://doi.org/10.1002/wcms.1327
  19. F. Neese, The ORCA program system, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2(1), 73-78. https://doi.org/10.1002/wcms.81
  20. T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett., 2004, 393(1-3), 51-57. https://doi.org/10.1016/j.cplett.2004.06.011
  21. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305. https://doi.org/10.1039/b508541a
  22. T.Y. Nikolaienko, L. A. Bulavin, D. M. Hovorun, Theor. Chem., 2014, 1050, 15-22. https://doi.org/10.1016/j.comptc.2014.10.002
  23. R.G. Pearson, Inorg. Chem., 1988, 27(4), 734-740. https://doi.org/10.1021/ic00277a030
  24. M. Rbaa, B. Lakhrissi, Surf. Interfaces., 2019, 15, 43-59. https://doi.org/10.1016/j.surfin.2019.01.010
  25. Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, S. Meghdadi, Corros. Sci., 2017, 114, 133-145. https://doi.org/10.1016/j.corsci.2016.11.002
  26. M. Yadav, R.R. Sinha, S. Kumar, I. Bahadur, E.E. Ebenso, J. Mol. Liq., 2015, 208, 322-332. https://doi.org/10.1016/j.molliq.2015.05.005
  27. M. El Faydya, M. Rbaaa, L. Lakhrissia, B. Lakhrissia, I. Waradb, A. Zarroukc, I. B. Obot, Surf. Interfaces., 2019, 14, 222-237. https://doi.org/10.1016/j.surfin.2019.01.005
  28. D. Daoud, T. Douadi, H. Hamani, S. Chafaa, M. Al- Noaimi, Corros. Sci., 2015, 94, 21-37. https://doi.org/10.1016/j.corsci.2015.01.025
  29. A. Bousskri, A. Anejjar, M. Messali, R. Salghi, O. Benali, Y. Karzazi, S. Jodeh, M. Zougagh, E.E. Ebenso, B. Hammouti, J. Mol. Liq., 2015, 211, 1000-1008. https://doi.org/10.1016/j.molliq.2015.08.038
  30. S. Bashir, V. Sharma, H. Lgaz, I.M. Chung, A. Singh, A. Kumar, J. Mol. Liq., 2018, 263, 454-462. https://doi.org/10.1016/j.molliq.2018.04.143
  31. R. Solmaz, Corros. Sci., 2014, 79, 169-176. https://doi.org/10.1016/j.corsci.2013.11.001
  32. B. Xu, Y. Liu, X. Yin, W. Yong, Y. Chen, Corros Sci., 2013, 74, 206-213. https://doi.org/10.1016/j.corsci.2013.04.044
  33. R. Solmaz , G. Kardas, M. Culha, B. Yazici, M. Erbil, Electrochim. Acta., 2008, 53(20), 5941-5952. https://doi.org/10.1016/j.electacta.2008.03.055
  34. O. Sanni, A.P.I. Popoola, O.S.I. Fayomi, J. Bio. Tribo Corros., 2019, 5(4), 1-8. https://doi.org/10.1007/s40735-018-0196-2
  35. G.M. Schmid, H.J. Huang, Corros. Sci., 1980, 20(8-9), 1041-1057. https://doi.org/10.1016/0010-938X(80)90083-9
  36. A. Salhi, S. Tighadouini, M. El-Massaoudi, M. Elbelghiti, A. Bouyanzer, S. Radi, S. El Barkany, F. Bentiss, A. Zarrouk, J. Mol. Liq., 2017, 248, 340-349. https://doi.org/10.1016/j.molliq.2017.10.040
  37. S. Martinez, I. Stern, Appl. Surf. Sci., 2002, 199(1-4), 83-89. https://doi.org/10.1016/S0169-4332(02)00546-9
  38. S.S. Abd El Rehim, M. A.M. Ibrahim, K.F. Khalid, Mater. Chem. Phys., 2001, 70(3), 268- 273. https://doi.org/10.1016/S0254-0584(00)00462-4
  39. L. Zhou, Y.L. Lv, Y.X. Hu, J.H. Zhao, X. Xia, X. Li, J. Mol. Liq., 2018, 249, 179-187. https://doi.org/10.1016/j.molliq.2017.10.129
  40. M. El Azzouzi, A. Aouniti, S. Tighadouin, H. Elmsellem, S. Radi, B. Hammouti, A.El Assyry, F. Bentiss, A. Zarrouk, J. Mol. Liq., 2016, 221, 633-641. https://doi.org/10.1016/j.molliq.2016.06.007
  41. Y. Sasikumar, A.S. Adekunle, L.O. Olasunkanmi, I. Bahadur, R.Baskar, M.M. Kabanda, I.B. Obot, E.E. Ebenso, J. Mol. Liq., 2015, 211, 105-118. https://doi.org/10.1016/j.molliq.2015.06.052
  42. M. Mahdavian, M. Attar, Corros. Sci., 2009, 51(2), 409-414. https://doi.org/10.1016/j.corsci.2008.11.010
  43. M.A. Amin, S.S. Abd El-Rehim, E.E.F. El-Sherbini, O.A. Hazzazi, M.N. Abbas, Corros. Sci., 2009, 51(3), 658-667. https://doi.org/10.1016/j.corsci.2008.12.008
  44. M.A. Amin, M. M. Ibrahim, Corros. Sci., 2011, 53(3), 873-885. https://doi.org/10.1016/j.corsci.2010.10.022
  45. M. A. Amin , S. S. Abd El Rehim , H. T.M. Abdel-Fatah, Corros. Sci., 2009, 51(4), 882- 894. https://doi.org/10.1016/j.corsci.2009.01.006
  46. E. McCafferty, Corros. Sci., 2005, 47(12), 3202-3215. https://doi.org/10.1016/j.corsci.2005.05.046
  47. G. Quartarone, T. Bellomi, A. Zingales, Corros. Sci., 2003, 45(4), 715-733. https://doi.org/10.1016/S0010-938X(02)00134-8
  48. N.T. Thomas, K. Nobe, J. Electrochem. Soc., 1972, 119(11), 1450-1456. https://doi.org/10.1149/1.2404022
  49. B. Ait Addi, B. El Ibrahimi, A. Ait Addi, A. Shaban, E. Ait Addi, M. Hamdani, Electroanalysis., 2021, 33(3), 804-819. https://doi.org/10.1002/elan.202060581
  50. D. Landolt, Corrosion et Chimie de Surface des Metaux, 1st Edition. Alden Press, Oxford, 1993.
  51. L.L. Liano, S. Mo, H.Q. Luo, N.B. Li, J. Colloid Interface Sci., 2017, 499, 110-119. https://doi.org/10.1016/j.jcis.2017.03.091
  52. P. Mourya, P. Singh, A.K. Tewari, R.B. Rastogi, M.M. Singh, Corros. Sci., 2015, 95, 71-87. https://doi.org/10.1016/j.corsci.2015.02.034
  53. X. Li, S. Deng, H. Fu, Corros. Sci., 2011, 53(1), 302-309. https://doi.org/10.1016/j.corsci.2010.09.036
  54. I. benhammed, T. Douadi, S. Issaadi, M. Al-Noaimi, S. Chafaa, J. Dispers. Sci. Technol., 2020, 41(7), 1001-1021.
  55. X. Li, S. Deng, T. Lin, X. Xie, X. Xu, J. Mol. Liq., 2019, 274, 77-89. https://doi.org/10.1016/j.molliq.2018.10.066
  56. H. Heydari, M. Talebian, Z. Salarvand, K. Raeissi, J. Mol. Liq., 2018, 254, 177-187. https://doi.org/10.1016/j.molliq.2018.01.112
  57. A. Singh, K.R. Ansari, A. Kumar, W. Liu, C. Songsong, J. Alloys Compd., 2017, 712, 121-133. https://doi.org/10.1016/j.jallcom.2017.04.072
  58. A.K. Singh, P. Singh, J. Ind. Eng. Chem., 2015, 21, 552-560. https://doi.org/10.1016/j.jiec.2014.03.018
  59. P. Leena, Z. Hukuman N. H., A. R. Biju and M. Jisha, J. Electrochem. Sci. Technol., 2019, 10(2), 231-243. https://doi.org/10.5229/JECST.2019.10.2.231
  60. E. Gutierrez, J.A. Rodriguez, J. Cruz-Borbolla, J.G. Alvarado-Rodriguez, P. Thangarasu, Corros. Sci., 2016, 108, 23-25. https://doi.org/10.1016/j.corsci.2016.02.036
  61. H. Hamani, T. Douadi, M. Al-Noaimi, S. Issaadi, D. Daoud, S. Chafaa, Corros. Sci., 2014, 88, 234-245. https://doi.org/10.1016/j.corsci.2014.07.044
  62. A.K. Singh, S. Mohapatra, B. Pani, J. Ind. Eng. Chem., 2016, 33, 288-297. https://doi.org/10.1016/j.jiec.2015.10.014
  63. P. Geethamani, P.K. Kasthuri, J. Taiwan. Inst. Chem. Eng., 2016, 63, 490-499. https://doi.org/10.1016/j.jtice.2016.03.008
  64. H. Gerengi, H.I. Ugras, M.M. Solomon, S.A. Umoren, M. Kurtay, N. Atar, J. Adhes. Sci. Technol., 2016, 30(21), 2383-2403. https://doi.org/10.1080/01694243.2016.1183407
  65. L. Bellot-Gurlet, D. Neff, S. Reguer, J. Monnier, M. Saheb, P. Dillmann, J. Nano Res., 2009, 8, 147-156. https://doi.org/10.4028/www.scientific.net/JNanoR.8.147
  66. A.G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P.R. Mudimela, S.D. Shandakov, and et al, Nano Res., 2009, 2, 373-379. https://doi.org/10.1007/s12274-009-9036-5
  67. P. Colomban, S. Cherifi, G. Despert, J. Raman Spectrosc., 2008, 39(7), 881-886. https://doi.org/10.1002/jrs.1927
  68. D. Costa, P. Marcus, Molecular modeling of corrosion processes scientific development and engineering applications. Wiley, New Jersey, 2015, 125-156.
  69. M. Finsgar, A. Lesar, A. Kokalj, I. Milosev, Electrochim. Acta., 2008, 53(28), 8287-8297. https://doi.org/10.1016/j.electacta.2008.06.061
  70. Z. El Adnani, M. Mcharfi, M. Sfaira , M. Benzakour, A. Benjelloun, M.E. Touhami, Corros. Sci., 2013, 68, 223-230. https://doi.org/10.1016/j.corsci.2012.11.020
  71. E.E. Ebenso, D.A. Isabirye, N.O. Eddy, Int. J. Mol Sci., 2010, 11(6), 2473-2498. https://doi.org/10.3390/ijms11062473
  72. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc., 1983, 105(26), 7512-7516. https://doi.org/10.1021/ja00364a005
  73. H.Wang , X. Wang, H.Wang, L.Wang, A. Liu, J. Mol Model., 2007, 13, 147-153. https://doi.org/10.1007/s00894-006-0135-x
  74. K. Ramya, R. Mohan, A. Joseph, J. Taiwan. Inst. Chem. Eng., 2014, 45(6), 3021-3032. https://doi.org/10.1016/j.jtice.2014.08.033
  75. I.B. Obot, D.D. Macdonald, Z.M. Gasem, Corros Sci., 2015, 99, 1-30. https://doi.org/10.1016/j.corsci.2015.01.037