• 제목/요약/키워드: SEM scan

검색결과 85건 처리시간 0.023초

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Fusarium mangiferae as New Cell Factories for Producing Silver Nanoparticles

  • Hamzah, Haider M.;Salah, Reyam F.;Maroof, Mohammed N.
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권10호
    • /
    • pp.1654-1663
    • /
    • 2018
  • Finding a safe and broad-spectrum medication is a goal of scientists, pharmacists, and physicians, but developing and fabricating the right medicine can be challenging. The current study describes the formation of silver nanoparticles (AgNPs) by Fusarium mangiferae. It involves the antibiofilm activity of the nanoparticles against Staphylococcus aureus. It also involves cytotoxic effect against mammalian cell lines. Well-dispersed nanoparticles are formed by F. mangiferae. The sizes of the nanoparticles were found to range from 25 to 52 nm, and UV-Vis scan showed absorption around 416-420 nm. SEM, TEM, and AFM results displayed spherical and oval shapes. Furthermore, the FTIR histogram detected amide I and amide II compounds responsible for the stability of AgNPs in an aqueous solution. AgNPs were observed to decrease the formation of biofilm at 75% (v/v). DNA reducing, smearing, and perhaps fragmentation were noticed after treating the bacterial cells with 50% (v/v). Additionally, cell lysis was detected releasing proteins in the supernatant. It was also observed that the AgNPs have the ability to cause 59% cervical cancer cell line (HeLa) deaths at 25% (v/v), however, they showed about 31% toxicity against rat embryo fibroblast transformed cell lines (REF). The results of this study prove the efficiency of AgNPs as an antibiofilm against S. aureus, suggesting that AgNPs could be an alternative to antibiotics. It must also be emphasized that AgNPs displayed cytotoxic behavior against mammalian cell lines. Further studies are needed for assessing risk in relation to the possible benefit of prescribing AgNPs.

LNG 저장탱크용 9% Ni강 용접부의 저온피로균열진전 특성 (Fatigue Crack Growth Characteristics of 9% Ni Steel Welded Joint for LNG Storage Tank at Low Temperature)

  • 김재훈;심규택;김영균;안병욱
    • Journal of Welding and Joining
    • /
    • 제28권5호
    • /
    • pp.45-50
    • /
    • 2010
  • The fatigue crack growth characteristics of base metal and weld joint of 9% Ni steel for LNG storage tank was carried out using CT specimen at room temperature and $-162^{\circ}C$. Fatigue crack growth rate of base and weld metals at RT and $-162^{\circ}C$ was coincided with a single line independent of the change of stress ratio and temperature. In the region of lower stress intensity factor range, fatigue crack growth rate at $-162^{\circ}C$ was slower than that at RT, and the slop of fatigue crack growth rate at $-162^{\circ}C$ increased sharply with propagating of fatigue crack, fatigue crack growth rate at RT and $-162^{\circ}C$ was intersected near the region of $2{\times}10-4\;mm$/cycle, and after the intersection region, fatigue crack growth rate at $-162^{\circ}C$ was faster than that at RT. The micro-fracture mechanism using SEM shows the ductile striation in the stable crack growth region. Also the defects of weld specimen after fatigue testing were detected using the A scan of ultrasonic apparatus.

2차 전지용 $LiMnO_{2}$ 활물질 합성의 전기화학적 특성과 평가 (Electrochemical properties and Estimation of $LiMnO_{2}$ Active Material Synthesis for Secondary Batteries)

  • 위성동;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.210-215
    • /
    • 2002
  • This thesis is contents on the crystal grown by the solide phase method at $925^{\circ}C$ with orthorhombic structure that $LiMnO_{2}$ active material synthesised with precurse $Mn_{2}O_{3}$ and $LiOH.H_{2}O$ material to get three voltage level. The porosity analysis of the grown crystal in secondary batteries $LiMnO_{2}$ thin film is $1.323E+02\AA$ of the average pore diameter of powder particles and its structure to be taken the pore diameter was prepared. Adding voltage area to get properties of charge and discharge of which experiment result of $LiMnO_{2}$ thin film area 2.2V~4.3V, current and scan speed were 0.1mAh/g and $0.2mV/cm^{2}$ respectively, and properties of the charge and discharge to be got optimum experiment condition parameter and density rate of Li for analyze that unit discharge capacity with metal properties is 87mAh/g was 96.9[ppm] at 670.784[nm] wavelength, and density rate of Mn analyzed 837[ppm] at 257.610[nm]. It can be estimated the quality of thin film that wrong cell reject from the bottle of electrolyte. The results of SEM and XRD were the same that of original researchers.

  • PDF

Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications

  • Jang, Kihun;Lee, Sung-Won;Yu, Seongil;Salunkhe, Rahul R.;Chung, Ildoo;Choi, Sungmin;Ahn, Heejoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2974-2978
    • /
    • 2014
  • $Mn_3O_4$/multi-walled carbon nanotube (MWCNT) composites are prepared by chemically synthesizing $Mn_3O_4$ nanoparticles on a MWCNT film at room temperature. Structural and morphological characterization has been carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that polycrystalline $Mn_3O_4$ nanoparticles, with sizes of about 10-20 nm, aggregate to form larger nanoparticles (50-200 nm), and the $Mn_3O_4$ nanoparticles are attached inhomogeneously on MWCNTs. The electrochemical behavior of the composites is analyzed by cyclic voltammetry experiment. The $Mn_3O_4$/MWCNT composite exhibits a specific capacitance of $257Fg^{-1}$ at a scan rate of $5mVs^{-1}$, which is about 3.5 times higher than that of the pure $Mn_3O_4$. Cycle-life tests show that the specific capacitance of the $Mn_3O_4$/MWCNT composite is stable up to 1000 cycles with about 85% capacitance retention, which is better than the pure $Mn_3O_4$ electrode. The improved supercapacitive performance of the $Mn_3O_4$/MWCNT composite electrode can be attributed to the synergistic effects of the $Mn_3O_4$ nanoparticles and the MWCNTs, which arises not only from the combination of pseudocapacitance from $Mn_3O_4$ nanoparticles and electric double layer capacitance from the MWCNTs but also from the increased surface area, pore volume and conducting property of the MWCNT network.

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

CNT를 이용한 Supercapacitor의 충.방전 특성 (The Effect of CNT Electrode on the Charging and Discharging Characteristics of Supercapacitor)

  • 허근;명성재;이용현;전명표;조정호;김병익;심광보
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.275-275
    • /
    • 2007
  • Two sorts of electrode composed of Sulpur/CNT/PVDF and Silver/CNT/PVDF were prepared by in situ chemical method and their electrochemical performance were evaluated by using cyclic voltammetry, impedance measurement and constant-current charge/discharge cycling technique. Also, composite electrodes were characterized by FE-SEM and BET. Raw materials such as CNT/Silver and CNT/Sulfur were mixed in ethanol, dried. These mixed materials were heated at 900 and $320^{\circ}C$ for 2hr, respectively in order to enhance contact among CNT electrodes. Electric double layer capacitor cells were fabricated using these mixed powder with polymer of PVDF. For the charging and discharging characteristics measured at scan rate of 1 mA/s, Supercapacitor of Sulphur-CNT-PVDF electrode showed a better performance than that of Ag-CNT-PVDF, which seems to be related with lower contact resistance of Sulphur-CNT-PVDF electrode.

  • PDF

Fabrication and Characterization of Spherical Carbon-Coated Li3V2(PO4)3 Cathode Material by Hydrothermal Method with Reducing Agent

  • Moon, Jung-In;Song, Jeong-Hwan
    • 한국재료학회지
    • /
    • 제29권9호
    • /
    • pp.519-524
    • /
    • 2019
  • Spherical $Li_3V_2(PO_4)_3$ (LVP) and carbon-coated LVP with a monoclinic phase for the cathode materials are synthesized by a hydrothermal method using $N_2H_4$ as the reducing agent and saccharose as the carbon source. The results show that single phase monoclinic LVP without impurity phases such as $LiV(P_2O_7)$, $Li(VO)(PO_4)$ and $Li_3(PO_4)$ can be obtained after calcination at $800^{\circ}C$ for 4 h. SEM and TEM images show that the particle sizes are $0.5{\sim}2{\mu}m$ and the thickness of the amorphous carbon layer is approximately 3~4 nm. CV curves for the test cell are recorded in the potential ranges of 3.0~4.3 V and 3.0~4.8 V at a scan rate of $0.01mV\;s^{-1}$ and at room temperature. At potentials between 3.0 and 4.8 V, the third $Li^+$ ions from the carbon-coated LVP can be completely extracted, at voltages close to 4.51 V. The carbon-coated LVP exhibits an initial specific discharge capacity of $118mAh\;g^{-1}$ in the voltage region of 3.0 to 4.3 V at a current rate of 0.2 C. The results indicate that the reducing agent and carbon source can affect the crystal structure and electrochemical properties of the cathode materials.

Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구 (A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires)

  • 김재훈;손형진;김성현
    • Current Photovoltaic Research
    • /
    • 제7권3호
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

ez NANOsence II RGP 콘택트렌즈의 시력과 각막에 미치는 임상적 연구 (The Clinical Study on the Visual Acuity and Cornea of ez-NANOsence II RGP Contact Lens)

  • 김덕훈;배한용;한명교
    • 한국안광학회지
    • /
    • 제12권4호
    • /
    • pp.55-69
    • /
    • 2007
  • 본 연구는 ez NANOsence II RGP 콘택트렌즈를 사용하여 굴절이상 눈의 피검자에 대한 시력과 각막에 미치는 임상적 검증을 하였다. 피검자는 성인 121명(남성 29인, 여성 92명; 연령은 17세와 43세 사이, 평균 22.86세)을 대상으로 실시하였다. 피검자는 콘택트렌즈 착용 전의 증상을 포함하는 문진을 실시하였고, 또한 콘택트렌즈 착용전후의 눈에 대한 자각과 타각증상 변화도 검진하였다. 시력측정은 콘택트렌즈를 착용하여 원거리에서 실시하였고, 굴절검사는 타각적 방법(Topcon KR-8100, Japan)으로 나안 상태에서 실시하였다. 입체시 검사는 Titmus fly(Stereo Optical Co., U.S.A)와 TNO(Tech, The Netherlands)로서 콘택트렌즈 착용 후 근거리에서 시행하였고, 대비감도 진단은 콘택트렌즈 착용 후 대비감도 챠드(pelli-Robertson, USA)로 1m 거리에서 실시하였다. 각막 지형도검사는 콘택트렌즈 착용 후 나안상태에서 ORB scan(Bausch Lomb, U.S.A.)을 사용하였다. 콘택트렌즈의 표면미세구조는 SEM(JSM-5800, Japan)을 이용해서 관찰하였고, 콘택트렌즈의 화학 성분은 EDS 프로그램을 사용해서 분석하였다. 연구 결과는 다음과 같다. 1. 렌즈의 착용 기간이 길수록 피검자는 대게 개선된 시각기능을 획득했다. 2. 렌즈 착용에 따른 눈의 부작용은 거의 없었다. 3. 피검자의 렌즈 사용은 잘하고 있다. 4. 렌즈 착용기간이 길수록 각막의 굴절 값은 약간 감소하고, 곡률반경은 약간 증가하며, 각막난시는 감소(P<0.01)하고, 각막의 중앙부 두께도 감소하였다. 5. 렌즈 사용 기간이 길수록, 입체시와 대비감도는 더욱 정상 값을 가졌다. 6. 각막지형도 분석에서 대부분 피검자들은 착용기간의 차이에도 비슷한 형태를 나타내었다. 7. 새로운 렌즈와 사용한 콘택트렌즈의 표면미세구조는 미세 형태에서 비슷한 상태이다. 8. 새로운 렌즈와 사용된 콘택트렌즈의 화학적 구성 성분은 거의 같았다. 결론적으로 본 연구는 새로운 것과 사용된 콘택트렌즈의 표면 미세구조와 화학적 구성성분이 유사함을 확인하였다. 또한 렌즈의 장기 착용에도 피검자의 시기능은 개선되고, 눈의 부작용은 적게 나타났으며, 각막난시 값은 감소되었다. 본 검사는 콘택트렌즈 착용자의 시각기능은 콘택트렌즈의 성분과 미세구조가 시각 기능에 관련이 있다고 여겨진다. 본 연구에서 저자들은 ez NANOsence II RGP 콘택트렌즈는 굴절 이상 눈의 교정시력에 좋은 효과가 있다고 추측된다.

  • PDF