• Title/Summary/Keyword: SDS-G-PAGE

Search Result 482, Processing Time 0.022 seconds

Purification and Characterization of Two Novel Fibrinolytic Proteases from Mushroom, Fomitella fraxinea

  • Lee Jong-Suk;Baik Hyung-Suk;Park Sang-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.264-271
    • /
    • 2006
  • Two fibrinolytic enzymes were purified from the culture supernatant of Fomitella fraxinea mycelia by ion-exchange and gel filtration chromatographies, and were designated as F. fraxenia proteases 1 and 2 (FFP1 and FFP2). The apparent molecular masses of the enzymes were estimated to be 32 kDa and 42 kDa, respectively, by SDS-PAGE and gel filtration chromatography. Both enzymes had the same optimal temperature ($40^{\circ}C$), but different pH optima (10.0 and 5.0 for FFP1 and FFP2, respectively). FFP1 was relatively stable at pH 7.0-9.0 and temperature below $30^{\circ}C$, whereas FFP2 was very stable in the pH range of 4-11 and temperature below $40^{\circ}C$. FFPI activity was completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and aprotinin, indicating that this enzyme is a serine protease. The activity of FFP2 was enhanced by the addition of $CO^{2+}$ and $Zn^{2+}$ and inhibited by $Cu^{2+},\;Ni^{2+}$, and $Hg^{2+}$. Furthermore, FFP2 activity was strongly inhibited by EDTA and 1,10-phenanthroline, implying that the enzyme is a metalloprotease. Both enzymes readily hydrolyzed fibrinogen, preferentially digesting the $A{\alpha}$- and $B{\beta}$-chains of fibrinogen over ${\gamma}$-chain. FFP1 showed broad substrate specificity for synthetic substrates, but FFP2 did not. $K_{m}$ and $V_{max}$ values of FFP1 for a synthetic substrate, N-succinyl-Ala-Ala-Pro-Phe-pNA, were 0.213 mM and 39.68 units/ml, respectively. The first 15 amino acids of the N-terminal sequences of both enzymes were APXXPXGPWGPQRIS and ARPP(G)VDGQ(R,I)SK(L)ETLPE, respectively.

Cloning, Sequencing and Expression in Escherichia coli of Herpes simplex virus Type-1 Thymidine Kinase Gene

  • Lee, Hyung-Hoan;Kim, Jung-Woo;Kang, Hyun;Cha, Sung-Chul
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.3
    • /
    • pp.215-224
    • /
    • 1998
  • Cloning, sequencing and expressing in E. coli of the thymidine kinase (TK) gene of Herpes simplex virus type-1 (HSV-1) strain F was investigated. The TK gene, located in the BamHI 3.74 kb DNA fragment of the plasmid pHLA-12, was amplified by polymerase chain reaction (PCR). The 1,131 kb PCR product was cloned into the BamHI and EcoRI sites of pBacPAK9 plasmid and then named pBac-TK recombinant. The TK gene was subcloned into the BamHI and BglII sites of pQE-30, and named pQE-TK recombinant. The nucleotide sequence of the 1,131 kb TK gene was determined, and the GC content was 65.13%. There were deduced 367 amino acid residues with a total molecular weight of 43 kDa. The weight was confirmed by the protein produced by E. coli M15/pQE-TK on the SDS-PAGE and Western blot. The production of the TK protein in the IPTG induced cells was measured over 4 h. At the end of 1, 2 and 3 h the level increased by 146, 204 and 242%, respectively. The amount of the protein at the highest fraction purified with Ni-NTA resin chromatography was $0.68\;{\mu}g$ per ml. The soluble state TK protein was present in the cytoplasm. In these results the F strain was different in base sequence and amino acid sequence from that of the CL101 strain, which caused difference in their strains.

  • PDF

Isolation and characterization of a 40 kDa cysteine protease from Grymnopholloides seoi adult worms (참굴큰입흡충 (Gymnophalloides seoi) 성충에서 정제한 40 kDa 시스테인계열 단백분해효소의 특성)

  • 최민호;박원진
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • A 40 kDa cysteine protease was purified from the crude extract of adult worms of GMnnophalloines seoi by two consecutive steps: Sephacryl S-200 HR and DEAE- Sephacel chromatography. Enzyme activities were completely inhibited by cysteine protease inhibitors, L-lorans-epoxysuccinylleucylamido (4-guanidino) butane (E-64) and iodoacetic acid, strongly suggesting that the purified enzyme belongs to the cysteine family of proteases. The enzyme was maximally acive at pH 4.5 in 0.1 M of buffer, and its activity was greatly potentiated in the presence of 5 mM dithiothreitol. The protease degraded macromolecules with differential capabilities : it degraded extracellular matrix proteins, such as collagen and fibronectin, with a stronger activity against collagen than fibronectin . However, the enzyme digested hemoglobin and human immunoglobulins only slightly. leaving them nearly intact after an overnight reaction. Our results suggest that the cysteine protease of G. seoi adults is potentially significant in the nutrient uptake from the host intestine.

  • PDF

Isolation and Characterization of White Spot Syndrome Baculovirus in Cultured Penaeid Shrimp (Penaeus chinensis) (양식새우(Penaeus chinensis)에서의 White Spot Baculovirus의 분리 및 특성)

  • Heo, M.S.;Sohn, S.G.;Sim, D.S.;Kim, J.W.;Park, M.A.;Lee, J.S.;Choi, D.L.;Jung, S.H.;Kim, Y.J.;Oh, M.J.
    • Journal of fish pathology
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • Beginning in the summer of 1993, a serious mortality among cultured penaeid shrimp occurred in the western sea of Korea. The typical sign of this disease was white spots inside the surface of the carapace. Cytopathic effect (CPE) were not observed by virus in CHSE-214, RTG-2, but not by pH 11. A nonoccluded rod-shaped form virus was observed by electron microscopy in the lymphoid organ. The virion was bacilliform virus and sourrounded by a virion envelope. Its virion protein was found to be similar to hypodermal and hematopoietic necrosis virus (HHNBV) by analysis of virion proteins in SDS-PAGE. The genome of virus is double stranded DNA molecule whose full length was about 114kb. It was similar to penaeus acute viremia (PAV) of Japan.

  • PDF

Purification and Characterization of Chitinase from Paenibacillus illinoisensis KJA-424

  • JUNG WOO JIN;KUK JU HEE;KIM KIL YONG;KIM TAE HWAN;PARK RO DONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.274-280
    • /
    • 2005
  • A chitinase was purified from the culture supernatant of Paenibacillus illinoisensis KJA-424 by protein precipitation, DEAE-Sephadex anion-exchange chromatography, and Sephadex G-150 gel filtration. The molecular weight of the purified chitinase was 54 kDa on SDS-PAGE and activity staining. Optimal pH and temperature were pH 5.0 and 60$^{circ}$C, the presence of 10 ruM Ag$^{+}$ and Hg$^{2+}$ inhibited the activity by $92.1/%$ and $97.7/%$, and the K$_{m}$ and V$_{max}$ values were 1.12 mg chitin mrl and 1.48$\mu$mol GlcNAc min$^{-1}$, respectively. The enzyme hydrolyzed tetramer to dimer, pentamer to dimer and trimer, and hexamer to dimer, trimer and tetramer, indicating an endo-splitting mechanism. The chitinase had no hydrolytic activity toward dimer and trimer. The chitinase inhibited the mycelial growth of Rhizoctonia solani, suggesting an antifungal property.

Cloning and Expression of Isocitrate Lyase, a Key Enzyme of the Glyoxylate Cycle, of Candida albicans for Development of Antifungal Drugs

  • SHIN DONG-SUN;KIM SANGHEE;YANG HYEONG-CHEOL;OH KI-BONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.652-655
    • /
    • 2005
  • This paper describes the development of an enzymatic assay system for the identification of inhibitors of isocitrate lyase (ICL), one of the key enzymes of the glyoxylate cycle that is considered as a new target for antifungal drugs. A 1.6 kb DNA fragment encoding the isocitrate lyase from Candida albicans ATCC10231 was amplified by PCR, cloned into a vector providing His-Patch-thioredoxin-tag at the N-terminus, expressed in Escherichia coli, and purified by metal chelate affinity chromatography. The molecular mass of the purified ICL was approximately 62 kDa, as determined by SDS-PAGE, and the enzyme activity was directly proportional to incubation time and enzyme concentration. The effects of itaconate-related compounds on ICL activity were also investigated. Among them, itaconic acid, 3-nitropropionate, and oxalate had strong inhibitory activities with $IC_{50}$ values of 5.8, 5.4 and $8.6\;{mu}g/ml$, respectively. These inhibitors also exhibited antifungal activity on YPD agar media containing acetate as a sole carbon source, albeit at high concentration. The results indicate that the C. albicans ICL may be a regulatory enzyme playing a crucial role in fungal growth and is a prime target for antifungal agents.

Elucidation of Antioxidant Activity of Phosvitin Extracted from Egg Yolk using Ground Meat

  • Jung, Samooel;Jo, Cheo-Run;Kang, Min-Gu;Ahn, Dong-Uk;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.32 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • Phosvitin was extracted from a chicken egg yolk and the iron-binding, along with antioxidative activity of the extracted phosvitin, was determined after mixing with ground beef at the concentrations of 100 and 500 mg/kg of meat. The electrophoretic pattern of the extracted phosvitin on SDS-PAGE was found to be identical to that of the standard phosvitin. The extracted phosvitin at $1,000{\mu}g$/mL showed an ability to bind approximately 65% of the iron in a 3 mM iron solution. Lipid oxidation was inhibited in the ground beef mixed with 500 mg/kg of the extracted phosvitin, during storage at $4^{\circ}C$ compared to that of the control (p<0.05). Additionally, color stability of ground beef containing the extracted phosvitin was enhanced (p<0.05). The pH, cooking loss, texture, and sensory properties of the ground beef were not affected, by adding up to 500 mg/kg of the extracted phosvitin. This result suggests that the phosvitin extracted from egg yolk could be used as an antioxidant reagent. In particular, phosvitin would be more amenable for use in meat products because it is a natural protein derived from animal products.

Characterization of Streptomyces sp. KSM-35 and Purificaton of Its Maltotetraose Forming Amylase (Streptomyces sp. KSM-35의 특성과 Maltotetraose 생산성 아밀라제의 정제)

  • Cha, Jin;Kim, Young-Bae;Seo, Byung-Cheol;Park, Kwan-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.633-637
    • /
    • 1994
  • A bacterial strain KSM-35 producing maltotetraose forming amylase was isolated from compost and identified as Streptomyces based on its morphological, cultural, and physiological characteristics. The amylase from Streptomyces sp. KSM-35 culture filtrate was purified by ammonium sulfate precipitation, followed by the liquid chromatographic procedures using DEAE-Toyo pearl and sephadex G-100 with 27.1% activity recovery. The molecular weight of the enzyme was estimated to be 50,000 and the isoelectric point 4.3. The main product by the amylase from soluble starch was maltotetraose which accounted for 56% of all the oligosaccharides detected after 26 hrs of reaction. Maltose (20%o) and maltotriose (16%) were the next important byproducts while glucose and maltopentaose were detected as traces.

  • PDF

Purification and Properties of Cyclodextrin glycosyltransferase from Bacillus stearothermophilus KY-126 (Bacillus stearothermophilus KY-126가 생산하는 Cyclodextrin glycosyltransferase의 정제 및 특성)

  • Kang, Sang-Mo;Yoo, Si-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.375-381
    • /
    • 1994
  • A bacterial strain No. KY-126, which produced extracellular cyclodextrin glycosyltransferase(CGTase), was isolated from soil and identified as Bacillus stearothermophilus KY-126. The enzyme was purified by the treatments of ammonium sulfate precipitation, DEAF-Sephadex, Sephadex G-100 column chromatography. The optimal pH and temperature for the enzyme activity were pH 5.5 and $65^{\circ}C$, respectively. And the enzyme was stable at pH values from 6.0 to 11.0 at $55^{\circ}C$ for 30 min and stable up to $60^{\circ}C$ for 30 min.. The enzyme was inhibited by $HgCl_{2}$. The molecular weight of the enzyme was estimated to be 67,000 by using SDS-PAGE. The maximum conversion from starch to cyclodextrin (CD) by CGTase was 43% and obtained at 6 hr reaction and the ratio of ${\alpha}-,\;{\beta}-,\;{\gamma}-$, CD production at this time was 2.9 : 2.1 : 1.0.

  • PDF

Acidophilic Tannase from Marine Aspergillus awamori BTMFW032

  • Beena, P.S.;Soorej, M.B.;Elyas, K.K.;Sarita, G. Bhat;Chandrasekaran, M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1403-1414
    • /
    • 2010
  • Aspergillus awamori BTMFW032, isolated from sea water, produced tannase as an extracellular enzyme under submerged culture conditions. Enzymes with a specific activity of 2,761.89 IU/mg protein, a final yield of 0.51%, and a purification fold of 6.32 were obtained after purification through to homogeneity, by ultrafiltration and gel filtration. SDS-PAGE analyses, under nonreducing and reducing conditions, yielded a single band of 230 kDa and 37.8 kDa, respectively, indicating the presence of six identical monomers. A pI of 4.4 and a carbohydrate content of 8.02% were observed in the enzyme. The optimal temperature was found to be $30^{\circ}C$, although the enzyme was active in the range of $5-80^{\circ}C$. Two pH optima, pH 2 and pH 8, were recorded, although the enzyme was instable at a pH of 8, but stable at a pH of 2.0 for 24 h. Methylgallate recorded maximal affinity, and $K_m$ and $V_{max}$ were recorded at $1.9{\times}10^{-3}$M and 830 ${\mu}Mol$/min, respectively. The impacts of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on tannase activity were determined in order to establish the novel characteristics of the enzyme. The gene encoding tannase, isolated from A. awamori, was found to be 1.232 kb, and nucleic acid sequence analysis revealed an open reading frame consisting of 1,122 bp (374 amino acids) of one stretch in the -1 strand. In silico analyses of gene sequences, and a comparison with reported sequences of other species of Aspergillus, indicate that the acidophilic tannase from marine A. awamori differs from that of other reported species.