양식새우（Penaeus chinensis）에서의 White Spot Baculovirus의 분리 및 톡성

허뮨수 ${ }^{+}$• 손상규＊• 심두생＊－깁진우＊• 박명에＊－이주석＊
최둥림＊• 정슝희＊• 깁영진＊＊• 오명주＊＊

제주대학교 해양생산과학부，＊국립수산진홍원，＊＊여수대학교 어병학과

Abstract

1993년부터 한국 서해안의 새우 양식장에서는 양식새우의 대량페사가 일어났다．외부중상온 둫⿱ㄴ갑과 표 피에 횐 반점이 나타낪고 어류주화세포에는 배양되지 않았다．열 $\left(50^{\circ} \mathrm{C}\right)$ 및 강산 $(\mathrm{pH} 3)$ 에는 쉼게 실할되었으 나 강알키리 $(\mathrm{pH} 11)$ 에는 내성이 강했다．바이러스의 입자 형태는 Rod Shaped한 형태를 보쏬다．바이러스 단 백질의 분석결과는 Hypodermal Hematopoietic Necrosis Baculovirus（HHNBV）와 유사했고 바이러스 핵산분 석 결과는 약 114kb로 Penaeid Acute Viremia（PAV）와 유사했다．

Key words ：White spot，CPE，Rod shaped，dsDNA

우리나라 새우 양식산업은 서해안 지역을 중심 으로 약 180 여개소의 새우양식장에서 년간 2천여 톤의 새우를 생산하고 있으나 1993년 6～7월에 충 남 태안 및 전북 고창지역에서 난치성 전염병이 처음 발병한 후 거의 해마다 양식산 새우를 대량 폐사 시키고 있고 피해지역도 점차 확산되고 있다 （허 1997；손 둥 1998）．감염된 새우는 두흉갑 및 체표에 흰반점 증상이 나타나므로 병명을 일반적 으로 white spot syndrome disease（WSSD）라고도 부르는데 이와 같은 중상으로 인한 새우 대량폐사 는 아시아 전역에서 일어나고 있다（Haung et al．， 1994；Chou et al．，1995；Lightner 1996）．그래 서 일본에서는 새우 대량폐사 원인을 처음에는 RV－PJ（rod－shaped nuclear virus of Penaeus japonicus）감염중이라 하였으나（Momoyama et al．，1994）그 후 井上 等（1996）이 보리새우류의 급성 바이러스 혈증（penaeid acutes viremia：PAV） 이라 하고 폐사 원인 바이러스를 PRDV（penaeid rod－shaped DNA virus）이라 하였으며（Inouye et al．，1996），중국에서는 이와 같은 새우질병을 explosive epidemic disease라 하고，폐사원인 바이 러스를 HHNBV라 하였다（Haung et al．，1994）． 따라서 본 연구에서는 우리나라 새우양식장에서 양

[^0]식산 새우를 대량폐사 시키는 원인을 정확히 규명 하기 위해 감염된 새우로부터 바이러스를 분리하 여 원인 바이러스의 특성을 조사하였다．

재료 및 방법

종상 및 행둥류형

감염새우를 수집하여 외부 증상을 육안 및 현미 경을 퉁하여 관찰하였고 바이러스 감염새우를 실 험실 사역수조에 수용하여 행동유형을 관찰하였고 새우 양식장에서 직접 또는 어민과의 전화 면접을 통하여 행동유헝을 조사하였다．

바이러스 분리

서해안 지역（경기 화성，충남 태안，전북 고창 및 부안，전남 영광）의 새우앙식장에서 발병한 양 식산 대하를 1993년부터 현지에서 수집하여 실험 에 사용할 때까지 $-85^{\circ} \mathrm{C}$ 에서 냉동 보관하였다．

낭동보관한 대하의 두흉부조직（간쳬장，림프기 관，위，심장 둥）을 적출하여 유발에 넣고 10 배량 의 TN buffer $(20 \mathrm{~m}$ Tris， $0.4 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 7.4)$ 첨가해서 저온상태에서 마쇄한 후 $7,000 \times \mathrm{g}$ 에서 15 분간 원심분리（Sorvall RC5C）하여 상층액을 수 획하였다．수획한 상충액은 $20,000 \times \mathrm{g}$ 에서 2 시간 초원심분리 $\left(B e c k m a n L_{7}\right.$ ）하여 pellet를 만든 다음，

3배량의 TNB로 재현탁해서 sucrose($20 \sim 50 \% \mathrm{w} /$ $w)$ 농도구배에서 $200,000 \times \mathrm{g}$ 로 3 시간동안 초월심분 리하여 바이러스를 분리하였다.

세포 배양

새우 대량폐사 원인 바이러스를 순수분리하기 위 해 어류주화세포를 이용하여 세포 배양법으로 바 이러스 배앙을 시도하였다.

바이러스 배양애 사용한 어류주화세포는 CHSE214, RTG-2, EPC, FHM, 및 BF-2이며, 이들 어 류주화세포는 DMEM 기본배지에 $10 \% \mathrm{FBS}$ (Gibco), 10 mM glutamime(Gibco), 100 I.U./ml penicillin 및 streptomycin(Sigma)을 첨가한 배지 로 배양하였다. 단충배양된 어류 주화세포에 바이 러스에 감염된 새우 두흥부조직의 마쇄 여과액을 접종한 후 $20^{\circ} \mathrm{C}$ 에서 1 주일간 배양하고 세포변성호 과(CPE)가 나타나지 않으면 명목계대(blind passage)를 2 회 실시하여 바이러스를 배양하었다.

바이러스액 제조

마섀한 두흉부 조직올 원심분리후 수획한 상층 액을 $0.45 \mu \mathrm{~m}$ membrane filter(Coming)로 여과해 서 $-85^{\circ} \mathrm{C}$ 에 냉동 보관하면서 각종 실헙용 바이러 스 액으로 사용하였다.

열 안정성

바이러스액 5 ml 를 넣은 실험관에 멸근해수 5 ml 를 넣고 잘 혼든 후 $50^{\circ} \mathrm{C}$ 로 조정한 항온수조
 러스의 안정성을 시험하였다.

강산 및 강앓카리 감수성

pH 3과 11 로 조정한 멸균해수 100 m 를 넣고 3 시간 둥안 정치하여 강산 $(\mathrm{pH} 3)$ 이나 망알칼리 $(\mathrm{pH}$ 11)에 대한 새우 바이러스의 감수성을 시험하였다.

에테르 감수성

바이러스액 4 ml 가 들어 있는 시험관에 에틸 에 테르 1 ml 를 첨가하고 $4^{\circ} \mathrm{C}$ 에서 18 시간동안 진탕한 후 에테르에 대한 새우 바이러스의 감수성을 시험 하였다.

바이러스 접종 및 병원성

열, 강산, 강알카리 및 에테르 처리한 새우 바이 러스액 전량을 해수가 들어있는 $20 /$ 아크릴 수조 에 각각 넣고 건강한 대하치하(평균체중 0.5 g) 10 미씩을 수용한 다음, 수온 $25 \pm 0.5^{\circ} \mathrm{C}$ 에서 10 일간 새우배합사료(천하제일사료)를 소량씩 급이 하면서 새우 폐사유무롤 관찰하였으며, 시험기간둥안 수질 악화를 방지하기 위해 매일 사욱수량의 10% 정도 를 환수하였다. 그리고 사육수조에 바이러스액을 처리하지 않고 첨가한 감염구와 바이러스액을 첨 가하지 않은 미감염구를 각각 감염 대조구와 미감 염 대조구로 설정하였다.

바이러스 입자 과차ํ

바이러스 감염으로 인해 두흄갑 및 체표에 휜반 점올 헝성한 대하의 두홍부조직을 2.5% glutaraldehyde 액으로 24 시간동안 전 고정하고 실 온에서 2시간동안 1% osmium tetroxide 액으로 고정하였다. 이어서 알코올계열로 탈수하여 푸로필 렌옥사이드로 치환하고 Epon 812 로 열중합해서 초 미세절편기(Reichert-Jung)로 박절(60~90 mm)하여 grid에 붙이고 uranyl acetade and lead citrate로 이중염색해서 투과전자헌미경(Hitachi H-7100)으로 바이러스 입자형태를 관찰했다.

바이러스 구조단백 분석

새우감염 바이러스의 구조단백 분석을 위한 전 기영동은 Laemmli(1970)의 방법에 따라 실시하였 다. 즉 농축, 정제된 새우감염 바이러스를 동랗의 SDS-sample buffer 2.3% SDS: 0.05 mM Tris, pH6.8: 10% glycerol(w/v): $5 \% \quad 2$-mecaptocthanol)와 혼합하여 꿓는 물에 2분간 처리하고 $10,000 \times \mathrm{g}$ 에서 10 조간 원심분리 하여 시료를 준비 하였다. 준비된 시료를 10% polyacrylamide gel에 loading하여 200 volt로 3 시간 정도 전기영동한 다 음 coomassie blue R-250으로 염색하고 탈색하고 탈색액 (50% methanol: 10% acetic acid)으로 탈 색하였다. 바이러스 단백질의 분자량은 표준단백질 의 이동거리와 비교하여 결정하였다.

바이러스 협산 훈석

새우감염 바이러스의 핵산을 분석하기 위해 바 이러스 농축액 100μ 에 reaction buffer $10 \mu \mathrm{l}$ (10 mM Tris $\mathrm{pH} 6.7,5 \mathrm{mM}$ EDTA pH 8.0 and

Fig. 1. External signs of naturally infected fresh shrimp (Penaeus chinensis). Diseased shrimp showed reddish discoloration of body, antenna and appendage.
$1 \% \mathrm{SDS}$)와 proteinase $\mathrm{K}(20 \mathrm{mg} / \mu \mathrm{l}) 15 \mu$ 를 넣고 흔합하여 $55^{\circ} \mathrm{C}$ 에서 2 시간동안 전처리 하였다. phenol/chloroform으로 바이러스 핵산을 추출하고, $1 / 10$ 의 3 M 초산암모뉶과 2 배량의 무수에탄올을 첨가하여 $-20^{\circ} \mathrm{C}$ 에 보관하면서 핵산을 침전시킨다. $12,000 \mathrm{rpm}$ 에서 10 분간 원심분리하여 핵산을 모았 다. 모아진 핵산은 TE buffer로 녹여서 실험에 사 용할 때가지 $-20^{\circ} \mathrm{C}$ 에 보관하였다. 바이러스 핵산은 상법에 따라 BamH I, EcoR I, Hind III 둥의 제 한효소률 이용하여 전체 길이를 확인하였다. TE 에 녹인 바이러스 핵산 $10 \mu \mathrm{l}$ 를 eppendorf tube에 넣 고 각 tube에 제한효소 1 unit, $10 \times$ reaction buffer를 넣은 후 $37^{\circ} \mathrm{C}$ 에서 2 시간동안 반웅시킨 다 음 1% agarose gel로 50 volts에서 2 시간동안 전 기영동하였다. 바이러스 핵산 band는 UV light상 에서 확인하였다.

경과 및 고참

외부증상 및 갑엽새우 행둥유혐

바이러스에 감염된 대하는 먹이를 거의 먹지 않 고 새우양식장 수면이나 가장자리를 힘없이 유영 하다가 정지해서 단기간내 대량폐사한다. 감염된 대하는 육안적으로 보면 체색, 안테나, 꼬리 및 우 영지가 붉게 되고 발병이 진행됨에 따라 체색은 점차 퇴색되면서 안테나는 부러진다(Fig. 1).

특히 본 바이러스병에 감염된 대하는 특징적으 로 두횽갑 및 체표의 큐티클충에 크기가 $1 \sim 2 \mathrm{~mm}$ 정도인 휜반점(white spot)을 형성하여 육안적으로

Fig. 2. White spot symptoms of naturally infected fresh shrimp (Penaeus chinensis).

쉽게 관찰된다(Fig. 2). 현미경으로 보면 횐반점은 국화꽃 모양을 하고 있다. 그렇지만 이러한 증상은 바이러스 감염초기 단계예서는 거의 나타나지 않 을 뿐만 아니라 경우에 따라서는 폐사가 일어나지 않은 양식장의 건강한 새우에서도 가끔 관찰되기 때문에 횐반점 형성 유무로서 새우 바이러스 감염 상태를 정확히 진단에는 다소 문제가 있다고 생각 된다.

바이러스 블리화학적 툭징

원인 바이러스를 순수분리하기 위해 어류주화세 포를 이용하여 세포배양법으로 바이러스 배양을 시 도하였으나 Table 1에서와 같이 실험에 사용한 어 류주화세포에서는 세포변성효과(CPE)가 전혀 나타 나지 않아, 바이러스 순수배양이 불가능하였다. 새 우 바이러스의 물리 - 화학적 특성을 알기 위해 바 이러스액을 열, 강산, 강알카리 및 에테르 처리하 여 새우 병원성시험을 통해서 시험한 결과, Table

Table 1. Susceptibility of fish cell lines to white spot baculovirus(WSBV)

Cell lines	Incubation temp. $\left({ }^{\circ} \mathrm{C}\right)$	No. of blind passage	CPE
RTG-2	20	2	-
CHSE-214	20	2	-
	25	2	-
EPC	20	2	-
	25	2	-
FHM	20	2	-
	25	2	-
BF-2	20	3	-
	25	2	-

Table 2. Effect of physical and chemical treatments on the pathogenicity of WSBV

Treatments	No. of shrimp tested	No. of shrimp deid	Mortality $(\%)$
Ether, 18 hrs Sea water, 18 hrs (control)	10	0	0
pH 3, 3 hrs	10	10	100
pH 11,3 hrs	10	9	90
pH $7,3 \mathrm{hrs}$ (control)	10	10	100
$50{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$ $4^{\circ} \mathrm{C}, 30 \mathrm{~min}$ $($ control $)$	10	0	0

Fig. 3. Electron microscopy of the lymphoid organ of naturally infected fresh shrimp (Penaeus chinensis).

2에서와 같이 에테르률 처리한 새우 바이러스는 병 원성을 상실하여 시험기간동안 폐사가 전혀 일어 나지 않았지만, 대조구에서는 100% 로 나타났다. 石井(1973)에 의하면 일반적으로 외막을 갖는 바이러 스는 지질 용해제인 에테르나 클로로포름등에 쉽 게 실활되므로, 본바이러스 입자도 외막을 갖고 있 다.

바이러스 있자헝태

바이러스에 감엽된 새우의 립프기관(lymphoid organ) 및 위 큐티클 상패세포의 핵내에는 다수의 바이러스 입자가 전자현미경으로 관찰된다(Fig 3). 전자현미경에 의한 바이러스 입자(virion)는 간상 바이러스로서 크기가 $250 \sim 300 \times 50 \sim 70 \mathrm{~nm}$ 이며 nucleocapsid와 envelope로 구성되어 있다.

Fig. 4. SDS-polyacrylamide gel electrophoresis of viral proteins. Lane 1: Standard molecular weight marker. Lane 2: Viral protein.

따라서 본 실험에서 관찰한 결과에 의하면 새우 바이러스는 감염된 세포의 핵내에서 증식함으로 인 해 바이러스 핵산은 DNA인 것으로 생각되며, baculovirus와 본 바이러스를 비교하면 BP, MBV 및 PBV 바이러스는 감염세포중에서 다각체라 불 리워ㅈㅣㅣ는 톡이한 포몌체(inclusion body)를 형성하 지만 BMNV와 YBV 바이러스는 포매체를 형성하 지 않는다. 따라서 포매쳴를 형성하지 않은 본 바 이러스는 BMNV와 YBV 바이러스와 유사하지만 이들 바이러스와는 바이러스 입자크기에 차이가 있 었다.

바이러스 구조단뱄 및 핵산뿐서

SDS-PAGE법으로 새우 바이러스의 구조 단백질 을 분석한 결과 분자량 14 에서 190 KDa 의 범위내 에 야 21 개의 단백질 band가 확인되었는데, 이는 HHNBV 바이러스의 구조 단백질과 이주 유사하다

Fig. 5. Agarose gel electrophoresis of viral nucleic acids. Lane M: λ-Hind III marker.
(Huang et al., 1995)(Fig 4). 그리고 새우 바이러 스의 total DNA를 Bam HI로 digestion하여 학인 한 결과 새우 바이러스의 핵산 크기는 약 114 kb 였 다(Fig 5). 지금까지 보고된 자료에 의하면 일본서 보리새우를 대량폐사시키는 새우류 급성 바이러스 혈증(PAV)의 원인 바이러스인 PRDV의 핵산의 크 기는 163 kb 정도이고(Inouye et al., 1996), 동남 아시아 지역에서 홍다리얼룩새우(Penaeus monodon) 를 대량 폐사시키는 SEMBV(systemic ectodermal and mesodermal baculovirus)의 핵산 크기는 약 168 kb 로(Wongteerasupaya et al., 1995) 이들 두 종류의 바이러스에 비해 본 실험에 사용한 바이러 스의 핵산 크기는 약간 적지만 일반적으로 baculovirus의 핵산크기가 $90 \sim 230 \mathrm{~kb}$ 입을 감안하면 baculovirus의 일종으로 생각된다. 우리나라 새우양 식장에서 분리된 새우 바이러스의 외막(envelop)이 있으면서 포매체(inclusion body)를 형성하지 않는 간상 바이러스로서, 바이러스 입자(viron)의 크기는 ultrathin section 상에서 $250 \sim 300 \times 50 \sim 70 \mathrm{~nm}$ 였고, 바이러스의 구조단백은 분자량이 14 에서 190 kDa 범위내에 약 21 개의 단백질 band로 구성되어 있으 며, total DNA의 크기는 약 114 kb 였다. 따라서 이상의 실험결과에 의하면 우리나라에서 분리된 바

이러스는 WSBV로서 일본 보리새우양식장에서 분 리된 새우류 급성 바이러스 혈증(PAV)의 원인 바 이러스인 PRDV와 아주 유사한 바이러스로 생각 된다.

감사의 맙솜

본 연구는 1995년도 농림수산부에서 시행한 현 장애로과제의 연구비 지원으로 수행되었으므로 감 사의 마음을 전합니다.

참고문헌

Bimboim, H. C. and Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Research, 7, 1513, 1979.
Chen, S-N., Chi, S-C. Kou, G-H. and Liao, I-C. Cell culture from tissues of grass prawn, Penacus mondon, Fish Pathology, 21(3), 161-166, 1986.
Chou, H. Y., Huang, C. Y. Wang, C. H., Chiang, H. C. and Lo, C. F. Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Disease of Aquatic Organisms, 23, 165-173, 1995.
Fulks, W. and Main, K. L. Introduction. In : Diseases of Cultured Penaeid Shrimp in Asia and the United States. The Oceanic Institute, p. 5, 17, 43, 51, 1992.
Hu, K., Wang, L., Duan, Y. and Zhang, S. Studies on cell culture from the hepatopancreas of the oriental shrimp, Penaeus orientalis Kishinouye. Asian Fisheries Science, 3, 299-307, 1990.
Huang, J. X., Yu, J., Song and Yang, C. Baculoviral hypodermal and hematopoietic necrosis-pathology of the shrimp explosive epidemic disease. Yellow Sea Fishery research Institute, Qingdao, P. R. Cina, 16. 110, 1994. 149-158(in Japanese).
Inouye, K., Yamano, K., Ikeda, N., Kimura, T., Nakano, H., Monoyama, K., Kobayashi, J. and Miyajima, S. The penaeid rod-shaped DNA virus (PRDV), which causes Penaeus Acute Viremia(PAV). Fish Pathology, 31(1), 39-45, 1996.
Kimura, T, H. Nakano, K. Momoyama, K. Yamano and K. Inoute. 1995. Purification of the rod-shaped nuclear virus(RV-PJ) form kuruma shrimp, Penaeus japonicus. Fish Pathology, 30(4), 287-288.
Lightner, D. V. A Handbook of Shrimp Pathology and Diagnostic Procedures for Disease of Cultured Penaeid Shrimp. World Aquaculture Society, 359, pp. 1996.
Liu, R. Y. Shrimp mariculture studies in China. In: G. L.

Rogers，R．Day and A．Lim（Editor）．Proceedings of the First Intemational Conference on Warm Water Aquaculture－Crustacea．Brigham Young University， Hawaii Campus，Laie，HI，pp．82－87， 1983.
Momoyama，K．，Hiraoka，M．，Nakoano，H．，Koube，H．， Inouye，K．and Oseka，N．Mass mortalities of cul－ tured kuruma shrimp，Penaeus japonicus，in Japan in 1993：histopathological studies．Fish Pathology， 29. 141－148（in Japanese）， 1994.
Momoyama，K．，Hiraoka，M．，Inouye，K．，Kimura，T． and Nakano，H．Diagnostic techniques of the rod－ shaped nuclear virus infection in the kuruma shrimp， Penaeus japonicus．Fish Pathol．，30（4），263－269． 1995.

Nakano，H．．Koube，H．Umezaea，S．，Momoyama．K．， Hiraoka，M．，Inouye，K．and Oseko，N．Mass mortal－ ities of cultured kuruma shrimp in Japan in 1993 ： epizootiological survey and infection trials．Fish Pathol．，29，135－139， 1994 （in Japanese）．
Shariff，M．and Subasinghe，R．P．Major diseases of cul－ tured shrimp in Asia ：An overview．In ：fulks W．and K．L．Main（Editors），Diseases of Cultured Penaeid Shrimp in Asia and the United States，The Oceanic Institute，pp．43－51， 1992.
Takahashi，Y．，Itami，T．，Kondo，M．，Maeda，M．，Fujii， R．，Tomonaga，S．，Supamattaya，K．and Boonyaratpa－ lin，S．Electron microscopic evidence of bacilliform virus infection in kuruma shrimp（Penaeus japonicus）． Fish Pathol．，29（2），121－125， 1994.
Toullec，J．Y．，Crozat，Y．，Patrois，J．and Porcheron．P． Development of primary cell cultures form the
penaeid shrimps Penaeus vannamei and P ．indicus．J． Crust．Biol．，16，643－649， 1996.
Wang，C．H．，Lo，C．，Leu，F，J．H．，Chou，C．M．，Yeh， P．Y．，Hou，H．Y．，Tung，M．C．．Chang，C．F．，Su，M． S ．and Kou，G．H．Purification and genomic analysis of baculovirus associated with white spot syndrome （WSBV）of Penaeus monodon．Dis．Aquat．Organ－ isms．23，239－242， 1995.
Wang，K．Penaeid Culture．China Aquaculture Company， Beijing，China， 1983.
挑山和夫，消毒凛によるバキユロウイルス性中腸腺懐死症 （BMN）ウイルスの不话化效果．魚病研究，24（1），47－49， 1989.

挑山和夫，バキユロウイルス性中腸腺壊死症ウイルスバキ ユロウイルス 性中腸腺铔死症（BMN）ウイルスエテル，食籃濃度まよ U゚pHに對する抵抗性，魚病硏究，24（3）， 175－177， 1989.
挑山和夫紫外線，日光，熟および乾燥によるバキユロウイ ルス性中腸腺 壤死症（BMN）ウイルスの不活化，魚病研究，24（2），115－118， 1989
挑山利夫，バキユロウイルス性中腸腺壤死症ウイルス （BMNV）感染組織 および海水中での活性維持。魚病研究，24（3），179－181， 1989.
挑山和夫，午風迫典久，1993年に西日本で發生した養殖クルマエビの大量死：病理組織觀察。魚病研究，29（2），141－148， 1994.

허문수．양싯새우 Penaeus chinensis와 Penaeusis japonicus의 바이러스성 질병．부산대학교 박사학위논 문， 1997.

Isolation and Characterization of White Spot Syndrome Baculovirus in Cultured Penaeid Shrimp (Penaeus chinensis)

M-S Heo, S-G Sohn*, D-S Sim*, J-W Kim*, M-A Park*, S-H Jung*, J-S Lee*, D-L Choi*, Y-J Kim** and M-J Oh**
Faculty of Applied Marine Science, Cheju National University, Cheju 690-756, Korea
*National Fiseries Reserch \& Development Institute, Pusan 629-900, Korea
**Department Fish Patholgy, Yosu National University

Abstract

Beginning in the summer of 1993, a serious mortality among cultured penaeid shrimp occurred in the western sea of Korea. The typical sign of this disease was white spots inside the surface of the carapace. Cytopathic effect (CPE) were not observed by virus in CHSE-214, RTG-2, but not by pH 11. A nonoccluded rod-shaped form virus was observed by electron microscopy in the lymphoid organ. The virion was bacilliform virus and sourrounded by a virion envelope. Its virion protein was found to be similar to hypodermal and hematopoietic necrosis virus (HHNBV) by analysis of virion proteins in SDS-PAGE. The genome of virus is double stranded DNA molecule whose full length was about 114kb. It was similar to penaeus acute viremia (PAV) of Japan.

[^1]
[^0]: ${ }^{\dagger}$ Corresponding author

[^1]: Key words : White spot, CPE, Rod-shaped, dsDNA

