Browse > Article
http://dx.doi.org/10.4014/jmb.1004.04038

Acidophilic Tannase from Marine Aspergillus awamori BTMFW032  

Beena, P.S. (Department of Biotechnology, Cochin University of Science and Technology)
Soorej, M.B. (Department of Biotechnology, Cochin University of Science and Technology)
Elyas, K.K. (Department of Biotechnology, Cochin University of Science and Technology)
Sarita, G. Bhat (Department of Biotechnology, Cochin University of Science and Technology)
Chandrasekaran, M. (Department of Biotechnology, Cochin University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.10, 2010 , pp. 1403-1414 More about this Journal
Abstract
Aspergillus awamori BTMFW032, isolated from sea water, produced tannase as an extracellular enzyme under submerged culture conditions. Enzymes with a specific activity of 2,761.89 IU/mg protein, a final yield of 0.51%, and a purification fold of 6.32 were obtained after purification through to homogeneity, by ultrafiltration and gel filtration. SDS-PAGE analyses, under nonreducing and reducing conditions, yielded a single band of 230 kDa and 37.8 kDa, respectively, indicating the presence of six identical monomers. A pI of 4.4 and a carbohydrate content of 8.02% were observed in the enzyme. The optimal temperature was found to be $30^{\circ}C$, although the enzyme was active in the range of $5-80^{\circ}C$. Two pH optima, pH 2 and pH 8, were recorded, although the enzyme was instable at a pH of 8, but stable at a pH of 2.0 for 24 h. Methylgallate recorded maximal affinity, and $K_m$ and $V_{max}$ were recorded at $1.9{\times}10^{-3}$M and 830 ${\mu}Mol$/min, respectively. The impacts of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on tannase activity were determined in order to establish the novel characteristics of the enzyme. The gene encoding tannase, isolated from A. awamori, was found to be 1.232 kb, and nucleic acid sequence analysis revealed an open reading frame consisting of 1,122 bp (374 amino acids) of one stretch in the -1 strand. In silico analyses of gene sequences, and a comparison with reported sequences of other species of Aspergillus, indicate that the acidophilic tannase from marine A. awamori differs from that of other reported species.
Keywords
Aspergillus awamori; acidophilic tannase; characterization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Van de Lagemaat, J. and D. L. Pyle. 2001. Solid-state fermentation and bioremediation: Development of a continuous process for the production of fungal tannase. Chem. Eng. J. 84: 115-123.   DOI   ScienceOn
2 Kasieczka-Burnecka, M., K. Kuc, H. Kalinowska, M. Knap, and M. Turkiewicz. 2007. Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl. Microbiol. Biotechnol. 77: 77-89.   DOI   ScienceOn
3 Raghukumar, C., U. Muraleedharan, V. R. Gaud, and R. Mishra. 2004. Xylanases of marine fungi of potential use for biobleaching of paper pulp. J. Ind. Microbiol. Biotechnol. 31: 433-441.   DOI   ScienceOn
4 Sharma, S., L. Agarwal, and R. K. Saxena. 2008. Purification, immobilization and characterization of tannase from Penicillium variable. Biores. Technol. 99: 2544-2551.   DOI   ScienceOn
5 Sharma, S., T. K. Bhat, and R. K. Dawra. 2000. A spectrophotometric method for assay of tannase using rhodonine. Anal. Biochem. 278: 85-89.
6 Battestin, V., G. A. Macedo, and V. A. P. De Freitas. 2008. Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chem. 108: 228-233.   DOI   ScienceOn
7 Iibuchi, S., Y. Minoda, and K. Yamada. 1972. Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase of Asp. orzo No.7. Agric. Biol. Chem. 36: 1553- 1562.   DOI
8 Sehgal, A. C., R. Tompson, J. Cavanagh, and R. M. Kelly. 2002. Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely thermoacidophilic archaeon Sulfolobus solfataricus P1. Biotechnol. Bioeng. 80: 784-793.   DOI   ScienceOn
9 Seth, M. and S. Chand. 2000. Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori, optimization of process parameters. Process Biochem. 36: 39- 44.   DOI   ScienceOn
10 Sharma, S., T. K. Bhat, and R. K. Dawra. 1999. Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World J. Microbiol. Biotechnol. 15: 673-677.   DOI   ScienceOn
11 Singh, R., N. Gupta, V. K. Goswami, and R. Gupta. 2006. A simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biotechnol. 70: 679-682   DOI   ScienceOn
12 Lee, S. B. and J. W. Taylor. 1990. Isolation of DNA from fungal mycelia and single spores, pp. 282-287. In M. A. Innis, D. H. Gefland, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press San Diego, California.
13 Lekha, P. K. and B. K. Lonsane. 1994. Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations. Process Biochem. 29: 497-503.   DOI   ScienceOn
14 Lekha, P. K. and B. K. Lonsane. 1997. Production and application of tannin acyl hydrolase. State of the art. Adv. Appl. Microbiol. 44: 215-260.   DOI
15 Lu, M. J. and C. Chen. 2007. Enzymatic tannase treatment of green tea increases in vitro inhibitory activity against Nnitrosation of dimethylamine. Process Biochem. 42: 1285-1290   DOI   ScienceOn
16 Marco, M. G., L. V. Rodríguez, E. L. Ramos, J. Renovato, M. A Cruz-Hernandez, R. Rodríguez, J. Contreras, and C. N. Aguilar. 2009. A novel tannase from the xerophilic fungus Aspergillus niger GH1. J. Microbiol. Biotechnol. 19: 987-996.   과학기술학회마을   DOI
17 Lu, M. J. and C. Chen. 2008. Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res. Int. 41: 130-137.   DOI   ScienceOn
18 Machida, M., M. Sano, K. Tamano, Y. Terabayashi, N. Yamane, O. Hatamoto, et al. 2009. Genomics of industrial filamentous fungi, Aspergillus oryzae and Aspergillus awamori. The 17th Congress of the International Society for Human and Animal Mycology, Tokyo.
19 Mahapatra, K., R. K. Nanda, S. S. Bag, R. Banerjee, A. Pandey, and G. Szakacs. 2005. Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochem. 40: 3251-3254.   DOI   ScienceOn
20 Naidu, R. B., N. Saisubramanian, D. Selvakumar, S. Janardhanan, and R. Puvanakrishnan. 2008. Partial purification of tannase from Aspergillus foetidus by aqueous two-phase extraction and its characterization. Curr. Trends Biotechnol. Pharm. 2: 201-207.
21 Farias, G. M., C. Gorbea, J. R. Elkins, and G. J. Griffin. 1994. Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol. Mol. Plant Pathol. 44: 51-63.   DOI   ScienceOn
22 Gander, J. E. 1984. Gel protein stains: Glycoproteins. Methods Enzymol. 104: 447-449.   DOI
23 García-Conesa, M. T., P. Ostergaard, S. Kauppinen, and G. Williamson. 2001. Hydrolysis of diethyl diferulates by a tannase from Aspergillus oryzae: Breaking cross-links between plant cell wall polymers. Carbohydr. Polym. 44: 319-324.   DOI   ScienceOn
24 Jun, C. S., M. J. Yoo, W. Y. Lee, K. C. Kwak, M. S. Bae, W. T. Hwang, D. H. Son, and K. Y. Chai. 2007. Ester derivatives from tannase-treated prunioside A and their anti-inflammatory activities. Bull. Korean Chem. Soc. 28: 73-76.   DOI   ScienceOn
25 Hatamoto, O., T. Watarai, M. Kikuchi, K. Mizusawa, and H. Sekine. 1996. Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175: 215-221.   DOI   ScienceOn
26 Iibuchi, S., Y. Minoda, and K. Yamada. 1968. Studies on tannin acyl hydrolase of microorganisms Part III. Purification of the enzyme and some properties of it. Agric. Biol. Chem. 32: 803- 809.   DOI
27 Ikasari, L. and D. A. Mitchell. 1996. Leaching and characterization of Rhizopus oligosporus acid protease from solid-state fermentation. Enzyme Microb. Technol. 19: 171-175.   DOI   ScienceOn
28 Kar, B., R. Banerjee, and B. C. Bhattacharyya. 2003. Effect of additives on the behavioral properties of tannin acyl hydrolase. Process Biochem. 38: 1285-1293.   DOI   ScienceOn
29 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680-685.   DOI   ScienceOn
30 Aoki, K., T. Tanaka, R. Shinke, and H. Nishira. 1979. Detection of tannase in polyacrylamide gels. J. Chromatogr. 170: 446-448.   DOI   ScienceOn
31 Bajpai, B. and S. Patil. 1996. Tannin acyl hydrolase (E.C. 3.1.1.20) activity of Aspergillus, Penicillium, Fusarium, and Trichoderma. World J. Microbiol. Biotechnol. 12: 217-220.   DOI   ScienceOn
32 Barthomeuf, C., F. Regerat, and H. Pourrat. 1994. Production, purification and characterization of tannase from Aspergillus niger LCF8. J. Ferment. Technol. 77: 137-142.
33 Boumans, H., M. C. van Gaalen, L. A. Grivell, and J. A. Berden. 1997. Differential inhibition of the yeast bc1 complex by phenanthrolines and ferroin. Implications for structure and catalytic mechanism. J. Biol. Chem. 272: 16753-16760.   DOI   ScienceOn
34 Battestin, V. and G. A. Macedo. 2007. Tannase production by Paecilomyces variotii. Bioresour. Technol. 98: 1832-1837.   DOI   ScienceOn
35 Belmares, R., J. C. Contreras-Esqcirel, R. Rodriguez-Herrera, A. Ramirez Coronel, and C. N. Aguilar. 2004. Microbial production of tannase: An enzyme with potential use in the food industry. Lebensm. Wiss. Technol. 37: 857-864.   DOI   ScienceOn
36 Bhardwaj, R., B. Singh, and T. K. Bhat. 2003. Purification and characterization of tannin acyl hydrolase from A. niger MTCC- 2425. J. Basic Microbiol. 43: 449-461.   DOI   ScienceOn
37 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
38 Brummer, W. and G. Gunzer. 1987. Laboratory techniques of enzyme recovery, pp. 260-264. In J. F. Kennedy (ed.). Biotechnology, Vol. 7a. VCH, Weinheim, Germany.
39 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.   DOI
40 Adachi, O., M. Watanabe, and H. Yamada. 1968. Studies on fungal tannase Part II. Physicochemical properties of the tannase from Aspergillus flavus. Agric. Biol. Chem. 32: 1079-1085.   DOI
41 Aguilar, C. N., R. Rodriguez, G. Gutierrez-Sanchez, C. Augur, E. Favela-Torres, L. A. Prado-Barragan, A. Ramirez-Coronel, and J. C. Contreras-Esquivel. 2007. Microbial tannases: Advances and perspectives. Appl. Microbiol. Biotechnol. 76: 47-59.   DOI   ScienceOn
42 Aoki, K., R. Shinke, and H. Nishira. 1976. Purification and some properties of yeast tannase. Agric. Biol. Chem. 40: 79-85.   DOI
43 Sabu, A., G. S. Kiran, and A. Pandey. 2005. Purification and characterization of tannin acyl hydrolase from A. niger ATCC 16620. Food Technol. Biotechnol. 43: 133-138.
44 Urbano, G., M. Lopez-Jurado, J. M. Porres, S. Frejnagel, E. Gomez-Villalva, J. Frias, C. Vidal-Valverde, and P. Aranda. 2007. Effect of treatment with $\alpha$-galactosidase, tannase or a cell-wall-degrading enzyme complex on the nutritive utilization of protein and carbohydrates from pea (Pisum sativum L.) flour. J. Sci. Food Agric. 87: 1356-1363.   DOI   ScienceOn
45 Vallee, B. L. and D. D. Ulmer. 1972. Biochemical effects of mercury, cadmium and lead. Annu. Rev. Biochem. 41: 91-128.   DOI   ScienceOn
46 Pohl, T. 1990. Concentration of proteins and removal of solutes. Methods Enzymol. 182: 68-83   DOI
47 Raab, T., R. Bel-Rhlid, G. Williamson, C. E. Hansen, and D. Chaillot. 2007. Enzymatic galloylation of catechins in room temperature ionic liquids. J. Mol. Catal. B 44: 60-65.   DOI   ScienceOn
48 Rajkumar, G. S. and S. C. Nandy. 1983. Isolation, purification, and some properties of Penicillium chrysogenium tannase. Appl. Environ. Microbiol. 46: 525-527.