Browse > Article

Purification and Characterization of Two Novel Fibrinolytic Proteases from Mushroom, Fomitella fraxinea  

Lee Jong-Suk (Korea Research Institute of Bioscience and Biotechnology)
Baik Hyung-Suk (Department of Microbiology, Busan National University)
Park Sang-Shin (Department of Biotechnology, Dongguk University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.2, 2006 , pp. 264-271 More about this Journal
Abstract
Two fibrinolytic enzymes were purified from the culture supernatant of Fomitella fraxinea mycelia by ion-exchange and gel filtration chromatographies, and were designated as F. fraxenia proteases 1 and 2 (FFP1 and FFP2). The apparent molecular masses of the enzymes were estimated to be 32 kDa and 42 kDa, respectively, by SDS-PAGE and gel filtration chromatography. Both enzymes had the same optimal temperature ($40^{\circ}C$), but different pH optima (10.0 and 5.0 for FFP1 and FFP2, respectively). FFP1 was relatively stable at pH 7.0-9.0 and temperature below $30^{\circ}C$, whereas FFP2 was very stable in the pH range of 4-11 and temperature below $40^{\circ}C$. FFPI activity was completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and aprotinin, indicating that this enzyme is a serine protease. The activity of FFP2 was enhanced by the addition of $CO^{2+}$ and $Zn^{2+}$ and inhibited by $Cu^{2+},\;Ni^{2+}$, and $Hg^{2+}$. Furthermore, FFP2 activity was strongly inhibited by EDTA and 1,10-phenanthroline, implying that the enzyme is a metalloprotease. Both enzymes readily hydrolyzed fibrinogen, preferentially digesting the $A{\alpha}$- and $B{\beta}$-chains of fibrinogen over ${\gamma}$-chain. FFP1 showed broad substrate specificity for synthetic substrates, but FFP2 did not. $K_{m}$ and $V_{max}$ values of FFP1 for a synthetic substrate, N-succinyl-Ala-Ala-Pro-Phe-pNA, were 0.213 mM and 39.68 units/ml, respectively. The first 15 amino acids of the N-terminal sequences of both enzymes were APXXPXGPWGPQRIS and ARPP(G)VDGQ(R,I)SK(L)ETLPE, respectively.
Keywords
Fomitella fraxinea; fibrinolytic protease; purification; characterization; serine protease; metalloprotease;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 15  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, N. S., K. H. Yoo, J. H. Hahm, K. S. Yoon, K. T. Chang, B. H. Hyun, P. J. Maeing, and S. H. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity, produced by Bacillus sp. DJ-2 from Doen-Jang. J. Microbiol. Biothecnol. 15: 72-79   과학기술학회마을
2 Fujita, M., K. Nomura, K. Hong, Y. Ito, A. Asada, and S. Nishimuro. 1993. Purification and characterization of strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophy. Res. Commun. 197: 1340-1347   DOI   ScienceOn
3 Kim J. H. and Y. S. Kim. 1999. A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci. Biotechnol. Biochem. 63: 2130-2136   DOI   ScienceOn
4 Kweon, M. H., H. Jang, W. J. Lim, H. I. Chang, C. W. Kim, H. C. Yang, H. J. Hwang, and H. C. Sung. 1999. Anticomplementary properties of polysaccharides isolated from fruit bodies of mushroom Pleurotus ostreatus. J. Microbiol. Biotechnol. 9: 450-456
5 Park, S. S., J. S. Lee, K.G. Bae, K. H. Yu, H. C. Han, and T. J. Min. 2001. Antioxidative activity and structural analysis of the steroid compound from Fomitella fraxinea. Kor. J. Mycol. 29: 67-71
6 Voet, D. and J. G. Voet. 1990. Biochemistry, pp. 1087-1095, 2nd Ed. John Willey and Sons, New York, U.S.A
7 Yoshimoto, T., H. Oyama, T. Honda, H. Takeshita, T. Kamiyama, and D. Tsuru. 1988. Cloning and expression of subtilisin amylosacchariticus gene. J. Biochem. 103: 1060- 1065   DOI
8 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
9 Nonaka, T., H. Ishikawa, Y. Tsumuraya, Y. Hashimoto, and N. Dohmae. 1995. Characterization of a thermostable lysine-specific metallopeptidase from the fruiting bodies of a Basidiomycete Grifola frondosa. J. Biochem. 118: 589-593
10 Harlan, J. M. and L. A. Harker. 1981. Haemostasis, thrombosis and thromboembolic disorder. Med. Clin. North Am. 65: 855-857   DOI
11 Astrup, T. and S. Mullertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 346-351   DOI   ScienceOn
12 Jang, J. S., D. O. Kang, M. J. Chun, and S. M. Byun. 1992. Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem. Biophys. Res. Commun. 184: 277-282   DOI   ScienceOn
13 Lee, S. K., D. H. Bae, T. J. Kwon, S. B. Lee, H. H. Lee, J. H. Park, S. Heo, and M. G. Jhonson. 2001. Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J. Microbiol. Biotechnol. 11: 845-852   과학기술학회마을
14 Nakajima, N., N. Taya, and H. Sumi. 1993. Potent fibrinolytic enzyme from the lysate of Katsuwonus pelamis digestive tract (Shiokara): Purification and characterization. Biosci. Biotechnol. Biochem. 57: 1604-1605   DOI   ScienceOn
15 Choi, H. S. and H. H. Shin. 1998. Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 90: 674-679   DOI
16 Collens, D. and H. R. Lijnen.1991. Basic and clinical aspects of fibrinolysis and thrombosis. Blood 78: 3114-3124
17 Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111   DOI   ScienceOn
18 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680-685   DOI   ScienceOn
19 Kim, W. K., K. H. Choi, Y. T. Kim, H. H. Park, J. Y. Choi, Y. S. Lee, H. I. Oh, I. B. Kwon, and S. Y. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62: 2482-2488
20 Reed, G. L., L. F. Parhami-Seren, and P. Kussie. 1995. Identification of plasminogen binding region in streptokinase that is necessary for the creation of functional streptokinase-plasminogen activator complex. Biochemistry 34: 10266- 10271   DOI   ScienceOn
21 Choi, W. A., J. W. Lee, K. H. Lee, and S. H. Park. 1998. Effects of environmental and nutritional conditions on fibrinolytic enzyme production from Bacillus subtilis BK-17 in flask culture. Kor. J. Biotechnol. Bioeng. 13: 491-496   과학기술학회마을
22 Lee, J. S., H. S. Baik, and S. S. Park. 2002. Optimal production and characterization of fibrinolytic enzymes from Fomitella fraxinea mycelia. Kor. J. Microbiol. Biotechnol. 30: 325- 331
23 Chihara, G., J. Hamuro, Y. Y. Maeda, Y. Arai, and F. Fukuoka. 1970. Fractionation and purification of the polysaxccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res. 30: 2776-2781
24 Lee, J. H., S. M. Cho, H. M. Kim, N. D. Hong, and I. D. Yoo. 1997. Immunostimulating activity of polysaccharides from mycelia of Phellinus linteus grown under different culture conditions. J. Microbiol. Biotechnol. 7: 52-55
25 Shin, H. H. and H. S. Choi. 1999. Purification and characterization of metalloenzyme from Pleurotus sajor-caju. J. Microbiol. Biotechnol. 9: 675-678
26 Zaworski, P. G., K. R. Marotti, V. MacKay, C. Yip, and G. S. Gill. 1989. Production and secretion of porcine urokinase in Saccharomyces cerevisiae: Characterization of the secreted gene product. Gene 28: 545-551
27 Kim J. H. and Y. S. Kim. 2001. Characterization of a metallaloenzyme from a wild mushroom, Tricholoma saponaceum. Biosci. Biotechnol. Biochem. 65: 356-362   DOI   ScienceOn
28 Liu, K. L., L. X. Du, F. P. Lu, X. Q. Zheng, and J. Xiao. 2005. Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Appl. Microbiol. Biotechnol. 67: 209-214   DOI
29 Sumi, H., H. Hamada, K. Nakashini, and H. Hiratani. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol. 84: 139-143   DOI
30 Lee, S. Y., J. S. Kim, J. E. Kim, K. Sapkota, M. H. Shen, S. Kim, H. S. Chun, J. C. Yoo, H. S. Choi, M. K. Kim, and S. J. Kim. 2005. Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr. Purif. 43: 1-7   DOI   ScienceOn
31 Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829- 835
32 Nakamura, T., Y. Yamafata, and E. Ichishima. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN of Bacillus subtilis(natto). Biosci. Biotechnol. Biochem. 56: 1869-1871   DOI   ScienceOn
33 Jain, S. C., U. Shinde, Y. Li, M. Inouye, and H. M. Berman. 1998. The crystal structure of an autoprocessed Ser221 Cys-subtilisin E propeptide complex at 2.0-A resolution. J. Mol. Biol. 284: 137-144   DOI   ScienceOn