• Title/Summary/Keyword: SCR의 NOx 저감

Search Result 93, Processing Time 0.031 seconds

A Convergence Study on the Effects of NH3/NOx Ratio and Catalyst Type on the NOx Reduction by Urea-SCR System of Diesel Engine (디젤엔진의 Urea-SCR 시스템에 의한 NH3/NOx 비율 및 촉매 방식이 NOx 저감에 미치는 영향에 관한 융합연구)

  • Yoon, Heung-Soo;Ryu, Yeon-Seung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • Diesel engines have important advantages over its gasoline counterpart including high thermal efficiency, high fuel economy and low emissions of CO, HC and $CO_2$. However, NOx reducing is more difficult on diesel engines because of the high $O_2$ concentration in the exhaust, marking general three way catalytic converter ineffective. Two method available technologies for continuous NOx reduction onboard diesel engines are Urea-SCR and LNT. The implementation of the Urea-SCR systems in design engines have made it possible for 2.5l and over engines to meet the tightened NOx emission standard of Euro-6. In this study, we investigate the characteristics of NOx reduction with respect to engine speed, load, types of catalyst and the $NH_3$/NOx ratio and present the conditions which maximize NOx reduction. Also we provide detailed experimental data on Urea-SCR which can be used for the preparation for standards beyond Euro-6.

The Efficiency of NOx Reduction by Regeneration and Wash Coating of Spent RHDM Catalyst (폐 RHDM 촉매의 재생 후 워시코팅에 의한 NOx 저감 효율)

  • Na, Woo-jin;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.876-885
    • /
    • 2018
  • Utilization of spent RHDM(Residue Hydrodemetallation) catalyst as de-NOx SCR(Selective Catalytic Reduction) catalyst was studied by conducting by heptane cleaning and high-temperature roasting for removal of deposited carbon and sulfur. Followed by oxalic acid leaching was carried out for controlling excess vanadium deposited on spent RHDM catalyst in search of appropriate vanadium loadings for the best SCR performance and the leaching conditions are 5~15wt% concentration of oxalic acid and 5min leaching time at $50^{\circ}C$ with the ultra-sonic agitator. De-NOx activities of prepared and commercial SCR catalyst were measured by the atmospheric SCR catalyst performance test unit, their residual content were also carried out by ICP, C&S Analysis and XRF. Acid leaching (AL-10) catalyst showed the highest de-NOx efficiency of all prepared catalysts and the de-NOx efficiency over wash coated catalyst(WC-AL-10) was equivalent to that of commercial SCR catalyst. Therefore the possibility of using as SCR catalyst for each application by adjusting treatment conditions of spent RHDM catalyst was found and further research will be needed in detail for the its commercialization.

A study of NOx performance for Cu-chabazite SCR catalysts by Sulfur poisoning and desulfation (Cu-Chabazite SCR Catalysts의 황 피독 및 탈황에 의한 NOx 저감 성능에 관한 연구)

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.855-861
    • /
    • 2013
  • Small-pore Cu-chabazite SCR catalysts with high NOx conversion at low temperatures are of interest for marine diesel engines with exhaust temperatures in the range of 150 to $300^{\circ}C$. Unfortunately, fuels for marine diesel engines can contain a high level of sulfur of up to 1.5% by volume, which corresponds to a $SO_2$ level of 500 ppm in the exhaust gases for an engine operating with an A/F ratio of 50:1. This high level of $SO_2$ in the exhaust may have detrimental effects on the NOx performance of the Cu-chabazite SCR catalysts. In the present study, a bench-flow reactor is used to investigate the effects of sulfur poisoning on the NOx performance of Cu-chabazite SCR catalysts. The SCR catalysts were exposed to simulated diesel exhaust gas stream consisted of 500 ppm $SO_2$, 5% $CO_2$, 14% $O_2$, 5% $H_2O$ with $N_2$ as the balance gas at 150, 200, 250 and $300^{\circ}C$ for 2 hours at a GHSV of 30,000 $h^{-1}$. After sulfur poisoning the low-temperature NOx performance of the SCR catalyst is evaluated over a temperature range of 150-$300^{\circ}C$ to determine the extent of the catalyst deactivation. Desulfation is also carried out at 600 and $700^{\circ}C$ for 30 minutes to determine whether it is possible to recover the NOx performance of the sulfur-poisoned SCR Catalysts.

DeNOx Characteristics of Hybrid SNCR-SCR Process in a Pilot Scale Flow Reactor (파일럿 규모 반응기에서 Hybrid SNCR-SCR 공정의 질소산화물 저감 특성)

  • Eom, Won-Hyun;Yoo, Kyung-Seun;Kim, Sung-June
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • DeNOx characteristics of hybrid SNCR-SCR process have been investigated in a pilot scale flow reactor. DeNOx efficiency of SNCR reaction was about 80% at $970^{\circ}C$ and hybrid SNCR-SCR process showed 92% at $940^{\circ}C$ with NSR = 2.0. Compared to SNCR process alone, hybrid SNCR-SCR process was more effective at cool side, which is lower than $940{^{\circ}C}$. It should be also noted that ammonia slip from hybrid SNCR-SCR process was below 1ppm at the condition of higher space velocity and the required catalyst volume can be decreased to 2/3 of SCR process. Key factors for DeNOx efficiency of hybrid SNCR-SCR process were found to be $NH_3$ concentration and NOx selectivity of urea injected in SNCR process.

SNCR/SCR Combined 시스템을 이용한 DeNOx 연구

  • 최상기;남창모;박상원;최성우
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.26-27
    • /
    • 2001
  • SNCR 기술을 이용한 NOx 저감은 반응온도 850~$1100^{\circ}C$에서 효과적이였으며, 몰비($NH_3$/NOx), $O_2$ 농도에 상당히 영향을 받고 있었다. 최적온도 $950^{\circ}C$, 몰비 1.5에서 약65%의 NOx 제거효율을 얻을 수 있으며, 온도구배가 없고 $O_2$ 농도가 2~4%로 낮아질 경우 더 높은 제거효율이 기대된다. SCR 기술에 의한 NOx 저감을 위해 $V_3$$O_{5}$/-$WO_3$/$TiO_2$ 상용촉매를 사용하였으며, 반응 온도는 200~$500^{\circ}C$ 범위로 확인되었으며, 약 84%의 NOx 제거효율이 몰비 1.5 에서 얻어졌다. $O_2$ 농도가 21%로 높아짐에 따라 상당히 효율이 떨어짐이 밝혀졌다. SNCR/SCR combined 시스템은 몰비=2.0, $T_{SNCR}$/=$850^{\circ}C$, $T_{SCR}$ /=$350^{\circ}C$ 반응조건에서는 약 93%의 NOx 저감효율을 보여주어 SNCR, SCR 단위기술보다 더 효과적이었다.

  • PDF

A Study on the NOx Reduction According to the Space Velocity Variation and Binder Content of Metal foam SCR Catalyst for Cogeneration Power Plant Application (열병합발전소 적용을 위한 Metal foam SCR촉매의 공간속도와 바인더 함량에 따른 NOx 저감에 관한 연구)

  • Na, Woo-Jin;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.153-164
    • /
    • 2019
  • To develop a high performance SCR catalyst which has better specific surface area, lightness of weight and fast temperature response than those of existing commercial SCR catalyst, metal foam type SCR catalysts were prepared by washcoating with vanadium, tungsten and binder. The de-NOx performance test of the prepared catalysts was carried out on atmospheric micro-test unit at lab. scale according to space velocity variation and temperature change, and the characteristics of them were analyzed by Porosimeter, SEM(scanning electron microscope), EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma) and Stereomicroscope. The NOx reduction performance decreased as the space velocity increased and was found to be the best at 3.5 wt.% contents of the vanadium and tungsten. It was found that the larger amount of binder was added, the worse the NOx reduction performance was, which was considered to be that the number of active sites of the prepared catalyst surface was occupied by the binder. We found that the amount of binder to be added to prepare the catalyst should be properly controlled by the condition of coated catalyt surface.

Characterization of SCR System for NOx Reduction of Diesel Engine (II) (디젤엔진의 질소산화물 저감을 위한 Urea SCR 시스템 특성 분석 (II))

  • Lee, Joon-Seong;Kim, Nam-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.83-89
    • /
    • 2008
  • The Effect of Space Velocity(SV) on NOx conversion rate was performed to develop NOx reduction after-treatment system. SV is calculated from engine exhaust gas volume and SCR catalyst volume. Found the Urea injection duty of maximum efficiency for NOx conversion if increase SV, NOx Conversion rate is down. Especially, when SV is more than $110,000h^{-1}$, NOx conversion rate decrease suddenly. Same case, if SV is lower than $40,000h^{-1}$, NOx conversion rate is down. Also, the characterization of Urea-SCR system was performed. Three candidate injectors for injecting Urea were tested in terms of 속 injection rate and NOx reduction rate. The performances of SCR catalytic converter on temperature were investigated. The performance of Urea-SCR system was estimated in the NEDC test cycle with and without EGR. It was found that nozzle type injector had high NOx conversion rate. SCR catalytic converter had the highest efficiency at the temperature of $350^{\circ}C$. EGR+Urea-SCR system achieved NOx reduction efficiency of 73% through the NEDC test cycle.

Numerical Modeling of Vanadia-based Commercial Urea-SCR plus DOC Systems for Heavy-duty Diesel Exhaust Aftertreatment Systems (바나듐 기반의 Urea-SCR과 DOC가 결합된 Heavy-Duty 디젤 배출가스 후처리 시스템의 SCR De-NOx 성능 향상에 관한 수치해석 연구)

  • Yun, Byoung-Kyu;Kim, Chong-Min;Kim, Man-Young;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • In this study, numerical experiments were carried out to estimate the SCR De-NOx performance in DOC plus SCR systems. The SCR De-NOx phenomena are described by Langmuir-Hinshelwood reaction scheme. After validating the present approach by comparing the present results with the experimental results, such various parameters as space velocity, $H_2O$ concentration, $NO_2$/NOx ratio and relative volume of DOC are explored to increase the SCR De-NOx performance. The results indicate that SCR De-NOx performance largely depends on space velocity and $NO_2$/NOx ratio, especially below $200^{\circ}C$. SCR De-NOx performance is seriously affected by relative volume of DOC with SCR due to increasing in $NO_2$/NOx ratio at below $250^{\circ}C$.

A Study on the Possibility of Using of Spent RHDS Catalyst as a SCR Catalyst wash-coated on the metal corrugated substrate (폐 RHDS 촉매재생 후 메탈 코로게이트 지지체상에서 워시코팅에 의한 NOx 저감 SCR 촉매에 관한 연구)

  • Na, Woo-jin;Cha, Eunji;Kang, Dae-hwan;Go, Young-ju;Cho, Ye-ji;Choi, Eun-young;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.723-732
    • /
    • 2020
  • The spent RHDS (Residue HydroDeSulfurization) catalyst is deactivated mainly by deposition of various contaminants such as coke, sulfur and vanadium on the surface of catalyst. To eliminate those contaminants, the following remanufacturing process was conducted. The first, heavy oil on the surface of the spent RHDS catalyst was removed by kerosene and dehydrated. The second, the high temperature incineration was carried out to eliminate coke and sulfur components deposited on the surface of spent RHDS catalyst. The third, the excessive quantity of Vanadium deposited on the surface of catalyst was removed by leaching process as follows: ultrasonic agitation was carried out at 50℃, for 10 seconds with 0.5% and 1% oxalic acid solution. The purpose of this process is to find out regenerated RHDS catalyst can be used as SCR catalyst for NOx reduction by controlling the vanadium residual content of the regenerated RHDS catalyst through leaching process. The composition of regenerated RHDS catalyst was analyzed by XRF and the NOx reduction efficiency was also measured by continuous catalytic fixed bed reactor. As the result, regenerated catalyst, with 0.5% oxalic acid, ultrasonic agitation in 10 seconds, showed the most stable NOx reduction efficiency. Also, in comparison with commercial SCR catalyst, the NOx reduction performance of regenerated catalyst was similar to that of commercial SCR catalyst at the temperature 375℃ and higher whereas was lower than commercial SCR catalyst at the temperature range between 200~250℃. Therefore, it was confirmed that the regenerated catalyst as powder form wash coated on the surface of metal corrugated substrate can be used for commercial SCR catalyst.

Characteristics of NOx Reduction and NH3 Slip in SNCR Using Pipe Nozzle for the Application of Hybrid SNCR/SCR Process (Hybrid SNCR/SCR 탈질공정에서 SNCR의 관통노즐에 의한 NOx 저감 및 NH3 Slip 특성)

  • Hyun, Ju Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.111-118
    • /
    • 2009
  • A hybrid SNCR/SCR plant was designed and manufactured, and experimented on the SNCR process in the first step to investigate the optimum operation conditions of SNCR, with the equivalence ratio of the reducing agent(NSR, 0.5~5.0), reaction temperature($850{\sim}1,100^{\circ}C$), nozzle type(wall nozzle, pipe nozzle), and nozzle position as variables. In the case of wall nozzles, the NOx reduction efficiency rapidly increased to 87% at 2.5 NSR and slowed down after this. Compared to the upward spray from the pipe nozzle, wall nozzles have narrower range of applicable reaction temperature. In the case of pipe nozzles, it rapidly increased to 77% at 1.5 NSR. But the pipe nozzle downward had no NOx reduction efficiency; on the contrary, NOx increased. When the reducing agent was sprayed upward from a pipe nozzle, the NOx reduction efficiency was 50~75% in the range of 0.5~1.5 NSR, and the NOx reduction efficiency was constant without fluctuations even in the change of reaction temperature from 890 to $1,000^{\circ}C$. When 5% urea solution was sprayed upward from the pipe nozzle, 200 ppm NOx decreased to approximately 60 ppm at 1.2 NSR, and the non-reacted $NH_3$ was 50~100 ppm. In this condition, we expect over 90% NOx reduction efficiency without additional supply of $NH_3$ to SCR at the back of SNCR.