• 제목/요약/키워드: SCID mice

검색결과 28건 처리시간 0.03초

NOD/SCID 모델 마우스 생체 내 돼지 T 면역세포의 증식 및 분화 (Differentiation and Proliferation of Porcine T Lymphocytes in NOD/SCID Mice)

  • 이용수;김태식;김재환;정학재;박진기;장원경;김동구
    • Reproductive and Developmental Biology
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2007
  • NOD/SCID 마우스는 선천성 면역결핍을 지닌 마우스로서 이종 세포 및 조직 이식을 위한 실험동물로서 가장 많이 활용되고 있다. 본 연구는 돼지의 골수조직에서 채취한 조혈줄기세포를 면역결핍마우스의 정맥 주입을 통하여 생체 내 주입을 실시한 결과, 마우스의 조혈조직에서 대단히 높은 돼지 T면역세포의 증식이 관찰되었다. 유세포 분석기를 이용해 돼지 골수 조혈세포 생체 이식 6주의 마우스에서의 돼지 T면역세포의 증식과 분화 특성을 분석한 결과, 마우스 조혈조직인 골수($5.4{\pm}1.9%$), 비장($15.4{\pm}7.3%$), 간($21.3{\pm}1.4%$), 림프절($33.5{\pm}32.8%$)에서 돼지 조혈줄기세포 유래 T 세포의 증식과 분화가 관찰되었고, 돼지 helper T 세포와 cytotoxic T 세포의 발달도 확인되었다. 또한 조직 면역염색을 통하여 마우스의 비장조직에 이식한 돼지 면역세포의 중식을 관찰하였다. 본 연구는 NOD/SCID 마우스를 이용해 돼지 조혈줄기세포로부터 T 면역세포로의 분화 및 발달과정을 생체 내에서 분석할 수 있는 유용한 동물모델로서 이용할 수 있음을 보여준다.

돼지 골수 조혈 세포의 이종 마우스 동물 모델 생체 증식 및 분화 특성 (Effective Reconstitution of Porcine Hematopoietic Cells in Newborn NOD/SCID Mice Xenograft)

  • 이용수;이현주;김태식;김혜선;김유경;김재환;박진기;정학재;장원경;김동구
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2008
  • 본 연구는 돼지 골수에서 존재하는 조혈 줄기 세포 및 전구 세포를 이용해 이종 동물 모델인 태아 마우스 복강 생체 이식을 통하여 돼지 조혈 세포의 이종 조혈 조직에서의 증식과 분화 특성을 규명하였다. 선천성 면역 부전 마우스인 NOD/SCID 마우스 태아 조혈 환경에 돼지 골수 유래 조혈 줄기 세포 및 전구 세포를 이식하고, 이식 후 5주령에 마우스 조혈기관에서의 돼지 조혈 세포의 증식과 분화 특성을 돼지 특이적 항체 면역 염색으로 유세포 분석을 실시한 결과, 마우스 조혈 조직인 골수, 흉선, 간장, 비장 및 림파절에서 돼지 조혈 세포의 분화 및 증식이 관찰되었다. 특히 돼지의 T 면역세포가 골수계 세포에 비해서 높은 chimerism이 관찰되어 태생 초기의 NOD/SCID 조혈 환경에 의한 특이적 T 면역세포의 증식에 적합한 조혈 환경을 제공하고 있다는 사실이 밝혀졌다. 본 마우스 신생 NOSD/SCID 복강 이식 동물 모델을 이용해 돼지 T 면역세포의 분화 발달 연구 및 이종 장기 이식 기전 연구에 좋은 모델로서 활용이 기대된다.

Growth and metastasis of human malignant melanoma SK-MEL-2 cell line in SCID mice

  • Choi, Yang-Kyu;Choi, Jae-Yoon;Jeon, Hea-Sung;Won, Young-Suk;Lee, Chul-Ho;Yoon, Won-Kee;Jeong, Kyu-Shik;Lee, Sang-Koo;Hyun, Byung-Hwa
    • 한국수의병리학회지
    • /
    • 제2권1호
    • /
    • pp.25-30
    • /
    • 1998
  • An in vivo model for human melanoma was established with the growth and metastasis of SK-MEL-2 cells. The tumor was introduced into C.B-17 SCID(severe combined immunodeficiency) mice intraperiotneally subcutaeously and intravenous inoculations. Tumors developed in 100% of mice inoculated subcutaneously and intraeritoneally both at site of inoculation and as metastatic tumor in the liver lungs and diaphragm. With intravenous inoculation 50% of mice showed metastasis in the spleen. Additionally metastatic foci that were not detected either by gross and/or standard histopathologic examination were demonstrated in the spleen and lungs by immunohistochemistry with HMB-45 monoclonal antibody. We conclude that the SCID mouse supports growth and metastasis of human malignant melanoma SK-MEL-2 cells.

  • PDF

Identification of newly isolated Babesia parasites from cattle in Korea by using the Bo-RBC-SCID mice

  • Cho, Shin-Hyeong;Kim, Tong-Soo;Lee, Hyeong-Woo;Tsuji, Masayoshi;Ishihara, Chiaki;Kim, Jong-Taek;Wee, Sung-Hwan;Lee, Chung-Gil
    • Parasites, Hosts and Diseases
    • /
    • 제40권1호
    • /
    • pp.33-40
    • /
    • 2002
  • Attempts were made to isolate and identify Korean bovine Babesia parasite. Blood samples were collected from Holstein cows in Korea. and Babesia parasites were propagated in SCID mice with circulating bovine red 1)food cells for isolation. The isolate was then antigenically and genotypically compared with several Japanese isolates. The Korean parasite was found to be nearly identical to the Oshima strain isolated from Japanese cattle, which was recently designated as Babesia ovata oshimensis n. var. Haemaphusalis longicornis was the most probable tick species that transmitted the parasite .

실험적 동맥경화증에서 Porphyromonas gingivalis 열충격단백-항원결정부위-특이성 T-세포주의 SCID mice내로의 주입효과에 대한 연구 (Adoptive transfer of Porphyromonas gingivalis heat shock protein epitope-specific T-cell lines into SCID mice in experimental atherosclerosis)

  • 최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Bacterial heat shock protein has been one of the components that are responsible to induce autoimmune disease mechanisms in the pathogenesis of atherosclerosis due to high level of homology in sequence with human counterpart. This mechanism may explain how bacterial infectious disease, such as periodontal disease, might contribute to the acceleration of the disease process of atherosclerosis. Porphyromonas gingivalis which is a major periodontal pathogenic bacterial species, has been implicated as one of the pathogenic bacteria playing the role in this context. The present study has been performed to evaluate the anti-atherosclerotic effect of adoptive transfer of Porphyromonas gingivalis heat shock protein epitope-specific T cell lines into severe combined immunodeficiency (SCID) mice. Peptide no. 15 with amino acid sequence VKEVASKTND-specific T cell line was selected for the transfer. When experimental atherosclerosis was induced in SCID mice adoptively transferred either by the T cell lines (experimental group) or by non-specific mouse T cells (control group), there was no significant difference in the severity and extent of the atherosclerosis induced by hypercholesterol diet.

Humanized (SCID) Mice as a Model to Study human Leukemia

  • Lee, Yoon;Kim, Donghyun Curt;Kim, Hee-Je
    • 대한의생명과학회지
    • /
    • 제21권2호
    • /
    • pp.51-59
    • /
    • 2015
  • A humanized mice (hu-mice) model is extremely valuable to verify human cell activity in vivo condition and is regarded as an important tool in examining multimodal therapies and drug screening in tumor biology. Moreover, hu-mice models that simply received human $CD34^+$ blood cells and tissue transplants are also overwhelmingly useful in immunology and stem cell biology. Because generated hu-mice harboring a human immune system have displayed phenotype of human $CD45^+$ hematopoietic cells and when played partly with functional immune network, it could be used to evaluate human cell properties in vivo. Although the hu-mice model does not completely recapitulate human condition, it is a key methodological factor in studying human hematological malignancies with impaired immune cells. Also, an advanced humanized leukemic mice (hu-leukemic-mice) model has been developed by improving immunodeficient mice. In this review, we briefly described the history of development on immunodeficient SCID strain mice for hu-and hu-leukemic-mice model for immunologic and tumor microenviromental study while inferring the potential benefits of hu-leukemic-mice in cancer biology.

Rodent model for long-term maintenance and development of the viable cysticerci of Taenia saginata asiatica

  • Wang, I.C.;Chung, W.C.;Lu, S.C.;Fan, P.C.
    • Parasites, Hosts and Diseases
    • /
    • 제38권4호
    • /
    • pp.237-244
    • /
    • 2000
  • Although oncospheres of Taenia saginata asiatica can develop into cysticerci in immunodeficiency, immunosuppressed, and normal mice, no detailed information on the development features of these cysticerci from SCID mice is available. In the present study, the tumor-like cyst was found in the subcutaneous tissues of each of 10 SCID mice after 38-244 days inoculation with 39,000 oncospheres of T. s. asiatica. These cysts weighed 2.0-9.6 gm and were 1.5-4.3 cm in diameter. The number of cysticerci were collected from these cysts ranged from 125 to 1,794 and the cysticercus recovery rate from 0.3% to 4.6%. All cysticerci were viable with a diameter of 1-6 mm and 9 abnormal ones each with 2 evaginated protoscoleces were also found. The mean length and width of scolex, protoscolex, and bladder were $477{\;}{\times}{\;}558,{\;}756{\;}{\times}{\;}727,{\;}and{\;}1,586{\;}{\times}{\;}1,615{\;}$\mu\textrm{m}$, respectively. The diameters of suckers and rostellum were $220{\mu\textrm{m}}{\;}and{\;}70\mu\textrm{m}$, respectively All cysticerci had two rows of rostellar hooks. These findings suggest that the SCID mouse model can be employed as a tool for long-term maintenance of the biological materials for advanced studies of immunodiagnosis, vaccine development, and evaluation of cestocidal drugs which would be most benefit for the good health of the livestocks.

  • PDF

How to Establish Acute Myeloid Leukemia Xenograft Models Using Immunodeficient Mice

  • Shan, Wu-Lin;Ma, Xiao-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7057-7063
    • /
    • 2013
  • The discovery of the immunodeficient mice has provided a tool for establishing animal models as hosts for in vivo analysis of AML. Various model systems have been established in the last few decades, and it is essential that murine AML models are developed to exploit more specific, targeted therapeutics. In this review, we concentrate on the models of AML and discuss the development of immunodeficiency models for understanding of leukemogenesis, describe those now available and their values and document the methods used for establishing and identifying AML mice models, as well as factors influencing engraftment of human AML in immunodeficient mice. Thus, the function of this article is to provide clinicians and experimentalists with a chronological, comprehensive appraisal of all AML model systems.

Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo -In vitro and in vivo Anticancer Activity of bio-Pt NPs-

  • Bendale, Yogesh;Bendale, Vineeta;Natu, Rammesh;Paul, Saili
    • 대한약침학회지
    • /
    • 제19권2호
    • /
    • pp.114-121
    • /
    • 2016
  • Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached $70-75mm^3$, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer.

Chemosensitizing effect and mechanism of imperatorin on the anti-tumor activity of doxorubicin in tumor cells and transplantation tumor model

  • Liang, Xin-li;Ji, Miao-miao;Liao, Zheng-gen;Zhao, Guo-wei;Tang, Xi-lan;Dong, Wei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권3호
    • /
    • pp.145-155
    • /
    • 2022
  • Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the antitumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.