Browse > Article
http://dx.doi.org/10.15616/BSL.2015.21.2.51

Humanized (SCID) Mice as a Model to Study human Leukemia  

Lee, Yoon (Cancer Research Institute, Department of Hematology, Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea)
Kim, Donghyun Curt (Northeastern University School of Pharmacy)
Kim, Hee-Je (Cancer Research Institute, Department of Hematology, Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea)
Abstract
A humanized mice (hu-mice) model is extremely valuable to verify human cell activity in vivo condition and is regarded as an important tool in examining multimodal therapies and drug screening in tumor biology. Moreover, hu-mice models that simply received human $CD34^+$ blood cells and tissue transplants are also overwhelmingly useful in immunology and stem cell biology. Because generated hu-mice harboring a human immune system have displayed phenotype of human $CD45^+$ hematopoietic cells and when played partly with functional immune network, it could be used to evaluate human cell properties in vivo. Although the hu-mice model does not completely recapitulate human condition, it is a key methodological factor in studying human hematological malignancies with impaired immune cells. Also, an advanced humanized leukemic mice (hu-leukemic-mice) model has been developed by improving immunodeficient mice. In this review, we briefly described the history of development on immunodeficient SCID strain mice for hu-and hu-leukemic-mice model for immunologic and tumor microenviromental study while inferring the potential benefits of hu-leukemic-mice in cancer biology.
Keywords
Humanized; Mice model; Acute myeloid leukemia;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ailles LE, Gerhard B, Kawagoe H, Hogge DE. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood. 1999. 94: 1761-1772.
2 Ayala F, Dewar R, Kieran M, Kalluri R. Contribution of bone microenvironment to Leukemogenesis and leukemia progression. Leukemia. 2009. 23: 2233-2241.   DOI
3 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997. 3: 730-737.   DOI
4 Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983. 301: 527-530.   DOI
5 Boyerinas B, Zafrir M, Yesilkanal AE, Price TT, Hyjek EM, Sipkins DA. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood. 2013. 121: 4821-4831.   DOI
6 Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET, Paul WE, Katz SI, Love PE, Leonard WJ. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity. 1995. 2: 223-238.   DOI
7 Christianson SW, Greiner DL, Schweitzer IB, Gott B, Beamer GL, Schweitzer PA, Hesselton RM, Shultz LD. Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human t-lymphoblastoid leukemia cells in c57bl/6j-scid mice and in c57bl/6j-scid bg mice. Cell Immunol. 1996. 171: 186-199.
8 Cogle CR, Bosse RC, Brewer T, Migdady Y, Shirzad R, Kampen KR, Saki N. Acute myeloid leukemia in the vascular niche. Cancer Lett. 2015. (in press)
9 De Lord C, Clutterbuck R, Titley J, Ormerod M, Gordon-Smith T, Millar J, Powles R. Growth of primary human acute leukemia in severe combined immunodeficient mice. Exp Hematol. 1991. 19: 991-993.
10 DiSanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci U S A. 1995. 92: 377-381.   DOI
11 Ferrara F, Schiffer CA. Acute myeloid leukaemia in adults. Lancet. 2013. 381: 484-495.   DOI
12 Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, Alvarez S, Diolaiti ME, Ugarte F, Forsberg EC, Le Beau MM, Stohr BA, Mendez J, Morrison CG, Passegue E. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014. 512: 198-202.   DOI
13 Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ. Enhanced human cell engraftment in mice deficient in rag2 and the common cytokine receptor gamma chain. Br J Haematol. 1998. 103: 335-342.   DOI
14 Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD. Chemotherapyresistant human aml stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007. 25: 1315-1321.   DOI
15 Humeau L, Namikawa R, Bardin F, Mannoni P, Roncarolo MG, Chabannon C. Ex vivo manipulations alter the reconstitution potential of mobilized human $CD34^+$ peripheral blood progenitors. Leukemia. 1999. 13: 438-452.   DOI
16 Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, Corcuff E, Mortier E, Jacques Y, Spits H, Di Santo JP. Il-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009. 206: 25-34.   DOI
17 Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M. Development of functional human blood and immune systems in nod/scid/il2 receptor {gamma} chain(null) mice. Blood. 2005. 106: 1565-1573   DOI
18 Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T. Nod/scid/gamma(c)(null) mouse: An excellent recipient mouse model for engraftment of human cells. Blood. 2002. 100: 3175-3182.   DOI
19 Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of cd44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006. 12: 1167-1174.   DOI
20 Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, Guthridge MA, Thomas D, Barry EF, Boyd A, Gearing DP, Vairo G, Lopez AF, Dick JE, Lock RB. Monoclonal antibodymediated targeting of cd123, il-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009. 5: 31-42.   DOI
21 Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell. 2015. 16: 239-253.   DOI
22 Kim JA, Shim JS, Lee GY, Yim HW, Kim TM, Kim M, Leem SH, Lee JW, Min CK, Oh IH. Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia. Cancer Res. 2015. 75: 2222-2231.   DOI
23 Kollet O, Peled A, Byk T, Ben-Hur H, Greiner D, Shultz L, Lapidot T. Beta2 microglobulin-deficient (b2m(null)) nod/scid mice are excellent recipients for studying human stem cell function. Blood. 2000. 95: 3102-3105.
24 Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M. Stromal cells prevent apoptosis of aml cells by up-regulation of anti-apoptotic proteins. Leukemia. 2002. 16: 1713-1724.   DOI
25 Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in scid mice. Science. 1992. 255: 1137-1141.   DOI
26 Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into scid mice. Nature. 1994. 367: 645-648.   DOI
27 Lee JY, Park S, Min WS, Kim HJ. Restoration of natural killer cell cytotoxicity by vegfr-3 inhibition in myelogenous leukemia. Cancer Lett. 2014. 354: 281-289.   DOI
28 Lion E, Willemen Y, Berneman ZN, Van Tendeloo VF, Smits EL. Natural killer cell immune escape in acute myeloid leukemia. Leukemia. 2012. 26: 2019-2026.   DOI
29 Lee JY, Park S, Han AR, Lim J, Min WS, Kim HJ. High aldhdimexpressing $CD34^+CD38^-$ cells in leukapheresed peripheral blood is a reliable guide for a successful leukemic xenograft model of acute myeloid leukemia. Oncol Rep. 2014. 32: 1638-1646.   DOI
30 Lee JY, Kim HJ. (Lymph)angiogenic influences on hematopoietic cells in acute myeloid leukemia. Exp Mol Med. 2014. 46: e122.   DOI
31 Lubin I, Faktorowich Y, Lapidot T, Gan Y, Eshhar Z, Gazit E, Levite M, Reisner Y. Engraftment and development of human t and b cells in mice after bone marrow transplantation. Science. 1991. 252: 427-431.   DOI
32 Lumkul R, Gorin NC, Malehorn MT, Hoehn GT, Zheng R, Baldwin B, Small D, Gore S, Smith D, Meltzer PS, Civin CI. Human aml cells in nod/scid mice: Engraftment potential and gene expression. Leukemia. 2002. 16: 1818-1826.   DOI
33 McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The scid-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988. 241: 1632-1639.   DOI
34 Mercier FE, Ragu C, Scadden DT. The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol. 2012. 12: 49-60.   DOI
35 Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. Rag-1-deficient mice have no mature b and t lymphocytes. Cell. 1992. 68: 869-877.   DOI
36 Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988.335:256-259.   DOI
37 Pantelouris EM. Absence of thymus in a mouse mutant. Nature. 1968. 217: 370-371.   DOI
38 Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM. Infection of the scid-hu mouse by HIV-1. Science. 1988. 242: 1684-1686.   DOI
39 Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K, Moriyama M, Nakamura M, Katsuki M, Takahashi K, Yamamura K, Sugamura K. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood. 1996. 87: 956-967.
40 Palu G, Selby P, Powles R, Alexander P. Spontaneous regression of human acute myeloid leukaemia xenografts and phenotypic evidence for maturation. Br J Cancer. 1979. 40: 731-735.   DOI
41 Pearce DJ, Taussig D, Zibara K, Smith LL, Ridler CM, Preudhomme C, Young BD, Rohatiner AZ, Lister TA, Bonnet D. Aml engraftment in the nod/scid assay reflects the outcome of aml: Implications for our understanding of the heterogeneity of aml. Blood. 2006. 107: 1166-1173.
42 Potter GK, Shen RN, Chiao JW. Nude mice as models for human leukemia studies. Am J Pathol. 1984. 114: 360-366.
43 Sawyers CL, Gishizky ML, Quan S, Golde DW, Witte ON. Propagation of human blastic myeloid leukemias in the scid mouse. Blood. 1992. 79: 2089-2098.
44 Shpitz B, Chambers CA, Singhal AB, Hozumi N, Fernandes BJ, Roifman CM, Weiner LM, Roder JC, Gallinger S. High level functional engraftment of severe combined immunodeficient mice with human peripheral blood lymphocytes following pretreatment with radiation and anti-asialo gm1. J Immunol Methods. 1994. 169: 1-15.   DOI
45 Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007. 7: 118-130.   DOI
46 Zheng J, Umikawa M, Cui C, Li J, Chen X, Zhang C, Huynh H, Kang X, Silvany R, Wan X, Ye J, Canto AP, Chen SH, Wang HY, Ward ES, Zhang CC. Inhibitory receptors bind angptls and support blood stem cells and leukaemia development. Nature. 2012. 485: 656-660.   DOI
47 Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL, Leiter EH. Multiple defects in innate and adaptive immunologic function in nod/ltsz-scid mice. J Immunol. 1995. 154: 180-191.
48 Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R. Human lymphoid and myeloid cell development in nod/ltsz-scid il2r gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005. 174: 6477-6489.   DOI
49 Theocharides AP, Jin L, Cheng PY, Prasolava TK, Malko AV, Ho JM, Poeppl AG, van Rooijen N, Minden MD, Danska JS, Dick JE, Wang JC. Disruption of sirpalpha signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. J Exp Med. 2012. 209: 1883-1899.   DOI