Differentiation and Proliferation of Porcine T Lymphocytes in NOD/SCID Mice

NOD/SCID 모델 마우스 생체 내 돼지 T 면역세포의 증식 및 분화

  • Lee, Yong-Soo (Cell and Gene Therapy Research institute, Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Kim, Tae-Sik (Cell and Gene Therapy Research institute, Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Kim, Jae-Hwan (Cell and Gene Therapy Research institute, Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Chung, Hak-Jae (Animal Biotechnology Division, National livestock Research Institute) ;
  • Park, Jin-Ki (Animal Biotechnology Division, National livestock Research Institute) ;
  • Chang, Won-Kyong (Animal Biotechnology Division, National livestock Research Institute) ;
  • Kim, Dong-Ku (Cell and Gene Therapy Research institute, Graduate School of Life Science and Biotechnology, Pochon CHA University)
  • 이용수 (포천중문의과대학교 세포유전자치료연구소) ;
  • 김태식 (포천중문의과대학교 세포유전자치료연구소) ;
  • 김재환 (포천중문의과대학교 세포유전자치료연구소) ;
  • 정학재 (축산연구소 응용생명공학과) ;
  • 박진기 (축산연구소 응용생명공학과) ;
  • 장원경 (축산연구소 응용생명공학과) ;
  • 김동구 (포천중문의과대학교 세포유전자치료연구소)
  • Published : 2007.03.31

Abstract

The nonobese diabetic / severe combined immune deficiency (NOD/SCID) has been used for determination of proliferation and differentiation of hematopoietic stem cells as xenotransplantation animal model. In this study, we transplanted porcine hematopoietic cells from bone marrow into NOD/SCID mice via intravenous injection to confirm the activity of differentiation and proliferation for porcine hematopoietic cells in vivo. Interestingly, we observed the result of high efficiency with pig T lymphocytes in hematopoietic organs, liver, spleen lymph node, and bone marrow in NOD/SCID mice. The porcine $CD3^{+}$ T cells were detected with $5.4{\pm}1.9%$ in bone marrow, $15.4{\pm}7.3%$ in spleen, $21.3{\pm}1.4%$ in liver, and $33.5{\pm}32.8%$ in lymph node of NOD/SCID mice at 6 weeks after trans-plantation Furthermore, immunohistochemical analysis showed the high engraftment of porcine T lymphocytes in spleen of NOD/SCID mice. Our data suggest that NOD/SCID mice are excellent animal model to determinate the generation md function of pig T lymphocytes.

NOD/SCID 마우스는 선천성 면역결핍을 지닌 마우스로서 이종 세포 및 조직 이식을 위한 실험동물로서 가장 많이 활용되고 있다. 본 연구는 돼지의 골수조직에서 채취한 조혈줄기세포를 면역결핍마우스의 정맥 주입을 통하여 생체 내 주입을 실시한 결과, 마우스의 조혈조직에서 대단히 높은 돼지 T면역세포의 증식이 관찰되었다. 유세포 분석기를 이용해 돼지 골수 조혈세포 생체 이식 6주의 마우스에서의 돼지 T면역세포의 증식과 분화 특성을 분석한 결과, 마우스 조혈조직인 골수($5.4{\pm}1.9%$), 비장($15.4{\pm}7.3%$), 간($21.3{\pm}1.4%$), 림프절($33.5{\pm}32.8%$)에서 돼지 조혈줄기세포 유래 T 세포의 증식과 분화가 관찰되었고, 돼지 helper T 세포와 cytotoxic T 세포의 발달도 확인되었다. 또한 조직 면역염색을 통하여 마우스의 비장조직에 이식한 돼지 면역세포의 중식을 관찰하였다. 본 연구는 NOD/SCID 마우스를 이용해 돼지 조혈줄기세포로부터 T 면역세포로의 분화 및 발달과정을 생체 내에서 분석할 수 있는 유용한 동물모델로서 이용할 수 있음을 보여준다.

Keywords

References

  1. Amanda GF, Larsson L, Goff LK, Restall DE, Happerfield L, Merkenschiager M (1990): Human thymocyte development in mouse organ cultures. Inter Immunol 2:571-578 https://doi.org/10.1093/intimm/2.6.571
  2. Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB, Rajan TV, Gott B, Roopenian DC, Shultz LD (1997): Enhanced human CD4+ T cell engraftment in beta2-microglobulin- deficient NOD-scid mice. J Immunol 158:3578-3586
  3. Fujiki Y, Onodera M, Yamaguchi T, Osawa M, Sudo K, Hamada H, Ema H, Shibuya A, Takiguchi M, Kubo T, Nakauchi H (2000): Dominant expansion of human T cells in non-obese diabetic/severe combined immunodeficiency mice implanted with human bone fragments. Exp Hematol. 28:792-801 https://doi.org/10.1016/S0301-472X(00)00178-8
  4. Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F, Shultz LD, von Kalle C, Eaves CJ (2001): Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-B2 microglobulin - null mice. J Clin Invest 107:199-206 https://doi.org/10.1172/JCI11519
  5. Hall KM Horvath TL, Abonour R Cometta K, Srour EF (2006): Decreased homing of retrovirally transduced human bone marrow CD34+ cells in the NOD/SCID mouse model. Exp Hematol 34:433-442 https://doi.org/10.1016/j.exphem.2005.12.014
  6. Hori T, Cupp J, Wrighton N, Lee F and Spits H (1991): Identification of a novel human thymocyte subset with a phenotype of CD3- CD4+ CD8 alpha + beta-1. Possible progeny of the CD3- CD4- CD8-subset. J Immunol 146:4078-4084
  7. Kamal-Reid S, Dick JE (1988): Engraftment of immuno-deficient mice with human hematopoietic stern cells. Science 242:1706-1709 https://doi.org/10.1126/science.2904703
  8. Keller G, Snodgrass R (1990): Life span of multipotential hematopoietic stern cells in vivo. J Exp Med 171:1407-1418 https://doi.org/10.1084/jem.171.5.1407
  9. Kollet Q Peled A, Byk T, Ben-Hur H, Leonard GD, Lapidot T (2000): $\beta$ 2-microglobulin-deficient ($B2m^{null}$) NOD/SCID mice are excellent recipients for studying human stern cell function. Blood 95:3102-3105
  10. Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T (2001): Ragid and efficient homing of human $CD34^+CD38^{-/low}CXCR4^+$ stern and progenitor cells to the bone marrow and spleen of NOD/SCID and $NOD/SCID/B2m^{null}$ mice. Blood 97:3283-3291 https://doi.org/10.1182/blood.V97.10.3283
  11. Kondo M, Weissman IL, Akashi K, (1997): Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661-671 https://doi.org/10.1016/S0092-8674(00)80453-5
  12. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL (2003): Biology of hematopoietic stern cells and progenitors: Implications for clinical application. Ann Rev Immunol 21:759-806 https://doi.org/10.1146/annurev.immunol.21.120601.141007
  13. Mabuchi A, Kodaira Y, Norose Y, Saizawa M, Kitajirna M and Yokomuro K(1998): Role of the liver in T cell differentiation-generation of CD3-CD4+/ CD8+ TCRbeta-cells and CD3-4-8- TCRbeta+ cells from CD4-8- TCRbeta-athyrnic nude bone marrow cells by culture with parenchymal liver cells. J Leu Bio, 63: 575-583 https://doi.org/10.1002/jlb.63.5.575
  14. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988): The SCIDhu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632-1639 https://doi.org/10.1126/science.2971269
  15. McNiece IK, Stewart FM, Deacon DM, Temeles DS, Zsebo KM, Clark SC, Quesenberry PJ (1989): Detection of a human CFC with high proliferation potential. Blood 74:609-612
  16. Morrison SJ, Uchida N, Weissman IL (1995): The biology of hematopoietic stern cells. Ann Rev Cell Dev BioI 11:35-71 https://doi.org/10.1146/annurev.cb.11.110195.000343
  17. Nakahata T, Ogawa M (1982): Hemopoietic colonyforming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest 70:1324-1328 https://doi.org/10.1172/JCI110734
  18. Nolta JA, Hanley MB, Kohn DB (1994): Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: Analysis of gene transduction of long-lived progenitors. Blood 83:3041-3051
  19. Robin C, Bennaceur-Griscelli A, Louache F, Vainchenker W, Coulombel L (1999): Identification of human T-Iymphoid progenitor cells in $CD34^+CD38^{low}$ and $CD34^+CD38^+$ subsets of human cord blood and bone marrow cells using NOD-SCID fetal thymus organ cultures. Br J Haematology. 104:809-819 https://doi.org/10.1046/j.1365-2141.1999.01266.x
  20. Shultz LD, Schweitzer PA, Christianson SW, Gatt B, Shweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL, Leiter EH (1995): Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180-191
  21. Srour EF, Zanjani ED, Cometta K, Traycoff CM, Flake AW, Hedrick M, Brandt JE, Leemhuis T, Hoffman R (1993): Persistence of human multilineage, Self-Renewing Lymphohematopietic stem cells in Chimeric Sheep. Blood 82:3333-3342
  22. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdoep PM (1989): Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74: 1563-1571
  23. Tsai EJ, Malech HL, Kirby MR, Hsu AP, Seidel NE, Porada CD, Zanjani ED, Bodine DM, Puck JM (2002): Retroviral transduction of IL-2G into CD34(+) cells from X-linked severe combined immunodeficiency patients permits human T- and B-cell development in sheep chimeras. Blood 100:72-79 https://doi.org/10.1182/blood.V100.1.72
  24. Van Hennik PB, de Koning AE, Ploemacher RE (1999): Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood 94:3055-3061
  25. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001): Physiological migration of hematopoietic stem and progenitor cells. Science 294: 1933-1936 https://doi.org/10.1126/science.1064081