Browse > Article

Differentiation and Proliferation of Porcine T Lymphocytes in NOD/SCID Mice  

Lee, Yong-Soo (Cell and Gene Therapy Research institute, Graduate School of Life Science and Biotechnology, Pochon CHA University)
Kim, Tae-Sik (Cell and Gene Therapy Research institute, Graduate School of Life Science and Biotechnology, Pochon CHA University)
Kim, Jae-Hwan (Cell and Gene Therapy Research institute, Graduate School of Life Science and Biotechnology, Pochon CHA University)
Chung, Hak-Jae (Animal Biotechnology Division, National livestock Research Institute)
Park, Jin-Ki (Animal Biotechnology Division, National livestock Research Institute)
Chang, Won-Kyong (Animal Biotechnology Division, National livestock Research Institute)
Kim, Dong-Ku (Cell and Gene Therapy Research institute, Graduate School of Life Science and Biotechnology, Pochon CHA University)
Publication Information
Abstract
The nonobese diabetic / severe combined immune deficiency (NOD/SCID) has been used for determination of proliferation and differentiation of hematopoietic stem cells as xenotransplantation animal model. In this study, we transplanted porcine hematopoietic cells from bone marrow into NOD/SCID mice via intravenous injection to confirm the activity of differentiation and proliferation for porcine hematopoietic cells in vivo. Interestingly, we observed the result of high efficiency with pig T lymphocytes in hematopoietic organs, liver, spleen lymph node, and bone marrow in NOD/SCID mice. The porcine $CD3^{+}$ T cells were detected with $5.4{\pm}1.9%$ in bone marrow, $15.4{\pm}7.3%$ in spleen, $21.3{\pm}1.4%$ in liver, and $33.5{\pm}32.8%$ in lymph node of NOD/SCID mice at 6 weeks after trans-plantation Furthermore, immunohistochemical analysis showed the high engraftment of porcine T lymphocytes in spleen of NOD/SCID mice. Our data suggest that NOD/SCID mice are excellent animal model to determinate the generation md function of pig T lymphocytes.
Keywords
Porcine hematopoietic cells; NOD/SCID mouse; Porcine T cells; Engraftment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB, Rajan TV, Gott B, Roopenian DC, Shultz LD (1997): Enhanced human CD4+ T cell engraftment in beta2-microglobulin- deficient NOD-scid mice. J Immunol 158:3578-3586
2 Kamal-Reid S, Dick JE (1988): Engraftment of immuno-deficient mice with human hematopoietic stern cells. Science 242:1706-1709   DOI
3 Van Hennik PB, de Koning AE, Ploemacher RE (1999): Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood 94:3055-3061
4 Kondo M, Weissman IL, Akashi K, (1997): Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661-671   DOI   ScienceOn
5 Nakahata T, Ogawa M (1982): Hemopoietic colonyforming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest 70:1324-1328   DOI
6 Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001): Physiological migration of hematopoietic stem and progenitor cells. Science 294: 1933-1936   DOI
7 McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988): The SCIDhu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632-1639   DOI
8 Kollet Q Peled A, Byk T, Ben-Hur H, Leonard GD, Lapidot T (2000): $\beta$ 2-microglobulin-deficient ($B2m^{null}$) NOD/SCID mice are excellent recipients for studying human stern cell function. Blood 95:3102-3105
9 Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdoep PM (1989): Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74: 1563-1571
10 Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F, Shultz LD, von Kalle C, Eaves CJ (2001): Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-B2 microglobulin - null mice. J Clin Invest 107:199-206   DOI   ScienceOn
11 Srour EF, Zanjani ED, Cometta K, Traycoff CM, Flake AW, Hedrick M, Brandt JE, Leemhuis T, Hoffman R (1993): Persistence of human multilineage, Self-Renewing Lymphohematopietic stem cells in Chimeric Sheep. Blood 82:3333-3342
12 Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL (2003): Biology of hematopoietic stern cells and progenitors: Implications for clinical application. Ann Rev Immunol 21:759-806   DOI   ScienceOn
13 Mabuchi A, Kodaira Y, Norose Y, Saizawa M, Kitajirna M and Yokomuro K(1998): Role of the liver in T cell differentiation-generation of CD3-CD4+/ CD8+ TCRbeta-cells and CD3-4-8- TCRbeta+ cells from CD4-8- TCRbeta-athyrnic nude bone marrow cells by culture with parenchymal liver cells. J Leu Bio, 63: 575-583   DOI
14 Hall KM Horvath TL, Abonour R Cometta K, Srour EF (2006): Decreased homing of retrovirally transduced human bone marrow CD34+ cells in the NOD/SCID mouse model. Exp Hematol 34:433-442   DOI   ScienceOn
15 Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T (2001): Ragid and efficient homing of human $CD34^+CD38^{-/low}CXCR4^+$ stern and progenitor cells to the bone marrow and spleen of NOD/SCID and $NOD/SCID/B2m^{null}$ mice. Blood 97:3283-3291   DOI   ScienceOn
16 Amanda GF, Larsson L, Goff LK, Restall DE, Happerfield L, Merkenschiager M (1990): Human thymocyte development in mouse organ cultures. Inter Immunol 2:571-578   DOI   ScienceOn
17 Keller G, Snodgrass R (1990): Life span of multipotential hematopoietic stern cells in vivo. J Exp Med 171:1407-1418   DOI   ScienceOn
18 Robin C, Bennaceur-Griscelli A, Louache F, Vainchenker W, Coulombel L (1999): Identification of human T-Iymphoid progenitor cells in $CD34^+CD38^{low}$ and $CD34^+CD38^+$ subsets of human cord blood and bone marrow cells using NOD-SCID fetal thymus organ cultures. Br J Haematology. 104:809-819   DOI   ScienceOn
19 Fujiki Y, Onodera M, Yamaguchi T, Osawa M, Sudo K, Hamada H, Ema H, Shibuya A, Takiguchi M, Kubo T, Nakauchi H (2000): Dominant expansion of human T cells in non-obese diabetic/severe combined immunodeficiency mice implanted with human bone fragments. Exp Hematol. 28:792-801   DOI   ScienceOn
20 Morrison SJ, Uchida N, Weissman IL (1995): The biology of hematopoietic stern cells. Ann Rev Cell Dev BioI 11:35-71   DOI   ScienceOn
21 Nolta JA, Hanley MB, Kohn DB (1994): Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: Analysis of gene transduction of long-lived progenitors. Blood 83:3041-3051
22 Hori T, Cupp J, Wrighton N, Lee F and Spits H (1991): Identification of a novel human thymocyte subset with a phenotype of CD3- CD4+ CD8 alpha + beta-1. Possible progeny of the CD3- CD4- CD8-subset. J Immunol 146:4078-4084
23 Tsai EJ, Malech HL, Kirby MR, Hsu AP, Seidel NE, Porada CD, Zanjani ED, Bodine DM, Puck JM (2002): Retroviral transduction of IL-2G into CD34(+) cells from X-linked severe combined immunodeficiency patients permits human T- and B-cell development in sheep chimeras. Blood 100:72-79   DOI   ScienceOn
24 Shultz LD, Schweitzer PA, Christianson SW, Gatt B, Shweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL, Leiter EH (1995): Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180-191
25 McNiece IK, Stewart FM, Deacon DM, Temeles DS, Zsebo KM, Clark SC, Quesenberry PJ (1989): Detection of a human CFC with high proliferation potential. Blood 74:609-612