• 제목/요약/키워드: SATELLITE IMAGE

검색결과 2,133건 처리시간 0.031초

LEO Satellite Time Synchronization Architecture

  • Kwon, Ki-Ho;Kim, Day-Young;Lee, Jong-In;Kim, Hak-Jung;Lee, Sang-Jeong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.367-370
    • /
    • 2006
  • A GPS-based time synchronization technique employing a refined HW circuitry and SW algorithm is considered as fine time-management system for Low Earth Orbit (LEO) remote sensing satellites. By synchronizing the On-Board Time (OBT) within satellites to the GPS 1PPS, a very expensive, highly accurate on-board clock is not required to determine the precise on-board time management. Also, the satellite command generation in ground stations and postprocessing of earth observation data which a particular image is acquired. This paper analyses on-orbit verification of the existing satellite time sync architecture and presents a new time sync architecture, operation and relation between the OBT and the GPS time.

  • PDF

Illumination Variations in Near-Equatorial Orbit Imaging: A Case Study with Simulated Data of RAZAKSAT

  • Hassan, Aida-Hayati-Mohd;Hashim, Mazlan;Arshad, Ahmad-Sabirin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1052-1054
    • /
    • 2003
  • RAZAKSAT is a second micro-satellite mission by Malaysian Satellite Program and is expected for launch in June 2004. Designed to orbit the earth at low-equatorial orbit, RAZAKSAT will meet Malaysia’s immediate needs to rapid data acquisition (real time and more repetitions) to address many operational issues of remote sensing applications, which require availability of current data sets. RAZAKSAT will be among the first remote sensing satellite to orbit the earth at low inclination along the equator, 9$^{\circ}$ with 685km altitude, hence, allows optimal geographical information and environment change within equatorial region be observed with a unique revisit characteristics. The satellite primary payload is MAC, a push-broom type camera with 2.5m of ground sampling distance (GSD) in panchromatic band and 5m of GSD in four multi-spectral bands. This paper describes on the variation of illumination anticipated from simulated RAZAKSAT image, examine its implication to its ground leaving radiances for major applications.

  • PDF

Imaging Mode Design and Performance Characteristics of the X-band Small SAR Satellite System

  • Kwag, Young-Kil
    • 대한원격탐사학회지
    • /
    • 제16권2호
    • /
    • pp.157-175
    • /
    • 2000
  • A synthetic aperture radar (SAR) system is able to provide all-weather, day-and- night superior imaging capability of the earth surface, and thus is extremely useful in surveillance for both civil and military applications. In this paper, the X-band high resolution spaceborne SAR system design is demonstrated with the key design performance for a given mission and system requirements characterized by the small satellite system. The SAR multi-mode imaging technique is presented with a critical parameter assessment, and the standard mode results are analyzed in terms of the image quality performances. In line with the system requirement X-band SAR payload and ground reception/processing subsystems are designed and the major design results are presented with the key performance characteristics. This small satellite SAR system shows the wide range of imaging capability with high resolution, and proves to be an effective surveillance systems in the light weight, high performance and cost-effective points of view.

Modeling Satellite Orbital Segments using Orbit-Attitude Models

  • Kim Tae-Jung
    • 대한원격탐사학회지
    • /
    • 제22권1호
    • /
    • pp.63-73
    • /
    • 2006
  • Currently, in order to achieve accurate geolocation of satellite images we need to generate control points from individual scenes. This requirement increases the cost and processing time of satellite mapping greatly. In this paper we investigate the feasibility of modeling entire image strips that has been acquired from the same orbital segments. We tested sensor models based on satellite orbit and attitude with different sets of unknowns. We checked the accuracy of orbit modeling by establishing sensor models of one scene using control points extracted from the scene and by applying the models to adjacent scenes within the same orbital segments. Results indicated that modeling of individual scenes with $2^{nd}$ order unknowns was recommended. In this case, unknown parameters were position biases, drifts, accelerations and attitude biases. Results also indicated that modeling of orbital segments with zero-degree unknowns was recommended. In this case, unknown parameters were attitude biases.

Classification ofWarm Temperate Vegetations and GIS-based Forest Management System

  • Cho, Sung-Min
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.216-224
    • /
    • 2021
  • Aim of this research was to classify forest types at Wando in Jeonnam Province and develop warm temperate forest management system with application of Remote Sensing and GIS. Another emphasis was given to the analysis of satellite images to compare forest type changes over 10 year periods from 2009 to 2019. We have accomplished this study by using ArcGIS Pro and ENVI. For this research, Landsat satellite images were obtained by means of terrestrial, airborne and satellite imagery. Based on the field survey data, all land uses and forest types were divided into 5 forest classes; Evergreen broad-leaved forest, Evergreen Coniferous forest, Deciduous broad-leaved forest, Mixed fores, and others. Supervised classification was carried out with a random forest classifier based on manually collected training polygons in ROI. Accuracy assessment of the different forest types and land-cover classifications was calculated based on the reference polygons. Comparison of forest changes over 10 year periods resulted in different vegetation biomass volumes, producing the loss of deciduous forests in 2019 probably due to the expansion of residential areas and rapid deforestation.

Development of Very Large Image Data Service System with Web Image Processing Technology

  • Lee, Sang-Ik;Shin, Sang-Hee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1200-1202
    • /
    • 2003
  • Satellite and aerial images are very useful means to monitor ecological and environmental situation. Nowadays more and more officials at Ministry of Environment in Korea need to access and use these image data through networks like internet or intranet. However it is very hard to manage and service these image data through internet or intranet, because of its size problem. In this paper very large image data service system for Ministry of Environment is constructed on web environment using image compression and web based image processing technology. Through this system, not only can officials in Ministry of Environment access and use all the image data but also can achieve several image processing effects on web environment. Moreover officials can retrieve attribute information from vector GIS data that are also integrated with the system.

  • PDF

천리안 위성의 기상탑재체 보정을 위한 달 영상 획득 방안 (Moon Imaging for the Calibration of the COMS Meteorological Imager)

  • 박봉규;양군호
    • 항공우주기술
    • /
    • 제9권2호
    • /
    • pp.44-50
    • /
    • 2010
  • 천리안위성은 기상탑재체, 해양탑재체 그리고 Ka-밴드 탑재체를 장착한 다목적 정지궤도 위성이다. 기상탑재체 가시채널의 품질을 향상 시기키 위하여 알베도(Albedo) 관측 정보를 주로 사용하며 경우에 따라서 달 영상을 보조수단으로 사용하는 것을 고려하고 있다. 그러나 궤도상 시험 이후 별도의 달 영상을 촬영하는 것은 권장되지 않는다. 별도의 관측을 수행할 경우 해당 기간 동안 기상 영상 획득이 불가능하기 때문이다. 본 논문에서는 달이 지구 근처에 있을 때 전구촬영을 통해 달의 영상을 획득하는 방법을 고려하였다. 이 경우도 달 영상을 얻는 것이 쉽지 않은데 그 이유는 기상탑재체는 스캐닝 형태의 센서인 반면 달은 계속 이동하기 때문이다. 또한 기상탑재체의 관측영역 내에 있지 않거나 지구 뒤에 위치한 경우 이미지를 얻을 수 없다. 따라서 본 논문에서는 전구촬영을 통해 달 영상을 얼마나 효과적으로 얻을 수 있는 지에 대한 분석을 수행하였다. 달 영상 획득시간을 예측하기 위한 방법론을 기술하고 시뮬레이션을 통해 얻어진 결과들을 정리하였다.

Point-Jacobian 반복 MAP 추정을 이용한 고해상도 영상복원 (Image Restoration of Remote Sensing High Resolution Imagery Using Point-Jacobian Iterative MAP Estimation)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제30권6호
    • /
    • pp.817-827
    • /
    • 2014
  • 위성 원격 탐사에서는 센서 운영 환경으로 인하여 영상을 수집하는 동안 영상의 질 저하가 일어나며 이러한 영상의 질 저하는 관측된 자료로부터 유용한 정보를 확인하거나 추출하는 데 악 영향을 미치는 번짐 현상(blurring)과 잡음 (noise)을 야기시킨다. 본 연구는 원격 탐사 영상 자료의 질 저하 현상을 모형화하기 위해 Gaussian 가산 잡음과 Markov random field로 정의되는 공간적 연결성을 가정하였다. 그리고 질 저하된 관측 자료로부터 원래 강도의 영상을 복원하기 위한 Point-Jacobian 반복 maximum a posteriori (MAP) 추정 법을 제안한다. 제안 연구는 이웃 창의 형태로 8 개 방향의 창으로 구성된 방사형을 사용하며 각 방향에서의 중심 화소와의 이웃 화소들 간의 Mahalanobis 제곱 거리를 경계 근접성 측정치로 사용한다. 제안 방법의 성능을 평가하기 위해서 고해상도 영상 자료에 나타날 수 있는 다양한 형태의 패턴을 사용하는 simulation 자료를 생성하여 화소 단위 분류 법을 사용하여 정량적 평가를 수행하였고 한반도 안양 북부 지역에서 관측된 1 m 급 IKONOS 자료의 무감독 분할을 통해 정성적 평가를 수행하였다. 실험 결과는 고해상도 원격 탐사 자료 분석에서 제안 영상 복원 법을 적용하면 현저히 분석의 정확성을 높이는 것을 보여 준다.

THE DECISION OF OPTIMUM BASIS FUNCTION IN IMAGE CLASSIFICATION BASED ON WAVELET TRANSFORM

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.169-172
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have been tried to enhance classification accuracy. Previous studies show that the classification technique based on wavelet transform is more effective than that of traditional techniques based on original pixel values, especially in complicated imagery. Various wavelets can be used in wavelet transform. Wavelets are used as basis functions in representing other functions, like sinusoidal function in Fourier analysis. In these days, some basis functions such as Haar, Daubechies, Coiflets and Symlets are mainly used in 2D image processing. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we computed the wavelet coefficients of satellite image using 10 different basis functions, and then classified test image. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis function. The energy parameter of signal is the sum of the squares of wavelet coefficients. The energy parameter is calculated by sub-bands after the wavelet decomposition and the energy parameter of each sub-band can be a favorable feature of texture. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

  • PDF

다중 위성영상 기반 강우자료를 활용한 동아시아 지역의 기상학적 가뭄지수 비교 분석 (Evaluation and Comparison of Meteorological Drought Index using Multi-satellite Based Precipitation Products in East Asia)

  • 문영식;남원호;김태곤;홍은미;서찬양
    • 한국농공학회논문집
    • /
    • 제62권1호
    • /
    • pp.83-93
    • /
    • 2020
  • East Asia, which includes China, Japan, Korea, and Mongolia, is highly impacted by hydroclimate extremes such drought, flood, and typhoon recent year. In 2017, more than 18.5 million hectares of crops have been damaged in China, and Korea has suffered economic losses as a result of severe drought. Satellite-derived rainfall products are becoming more accurate as space and time resolution become increasingly higher, and provide an alternative means of estimating ground-based rainfall. In this study, we verified the availability of rainfall products by comparing widely used satellite images such as Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Global Precipitation Climatology Centre (GPCC), and Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with ground stations in East Asia. Also, the satellite-based rainfall products were used to calculate the Standardized Precipitation Index (SPI). The temporal resolution is based on monthly images and compared with the past 30 years data from 1989 to 2018. The comparison between rainfall data based on each satellite image products and the data from weather station-based weather data was shown by the coefficient of determination and showed more than 0.9. Each satellite-based rainfall data was used for each grid and applied to East Asia and South Korea. As a result of SPI analysis, the RMSE values of CHIRPS were 0.57, 0.53 and 0.47, and the MAE values of 0.46, 0.43 and 0.37 were better than other satellite products. This satellite-derived rainfall estimates offers important advantages in terms of spatial coverage, timeliness and cost efficiency compared to analysis for drought assessment with ground stations.