• 제목/요약/키워드: S-torsion free module

검색결과 4건 처리시간 0.018초

FINITELY GENERATED PROJECTIVE MODULES OVER NOETHERIAN RINGS

  • LEE, SANG CHEOL;KIM, SUNAH
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.499-511
    • /
    • 2006
  • It is well-known that every finitely generated torsion-free module over a principal ideal domain is free. This will be generalized. We deal with ideals of the finite, external direct product of certain rings. Finally, if M is a torsion-free, finitely generated module over a reduced, Noetherian ring A, then we prove that Ms is a projective module over As, where $S=A{\setminus}(A)$.

  • PDF

Zero-divisors of Semigroup Modules

  • Nasehpour, Peyman
    • Kyungpook Mathematical Journal
    • /
    • 제51권1호
    • /
    • pp.37-42
    • /
    • 2011
  • Let M be an R-module and S a semigroup. Our goal is to discuss zero-divisors of the semigroup module M[S]. Particularly we show that if M is an R-module and S a commutative, cancellative and torsion-free monoid, then the R[S]-module M[S] has few zero-divisors of size n if and only if the R-module M has few zero-divisors of size n and Property (A).

CATENARY MODULES II

  • NAMAZI, S.;SHARIF, H.
    • 호남수학학술지
    • /
    • 제22권1호
    • /
    • pp.9-16
    • /
    • 2000
  • An A-module M is catenary if for each pair of prime submodules K and L of M with $K{\subset}L$ all saturated chains of prime submodules of M from K to L have a common finite length. We show that when A is a Noetherian domain, then every finitely generated A-module is catenary if and only if A is a Dedekind domain or a field. Moreover, a torsion-free divisible A-module M is catenary if and only if the vector space M over Q(A) (the field of fractions of A) is finite dimensional.

  • PDF