• 제목/요약/키워드: S-finitely generated

검색결과 35건 처리시간 0.021초

A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

  • Safaeeyan, Saeed;Baziar, Mohammad;Momtahan, Ehsan
    • 대한수학회지
    • /
    • 제51권1호
    • /
    • pp.87-98
    • /
    • 2014
  • Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say ${\Gamma}(M)$, such that when M = R, ${\Gamma}(M)$ is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for ${\Gamma}(M)$ in the present article. We show that ${\Gamma}(M)$ is connected with $diam({\Gamma}(M)){\leq}3$. We also show that for a reduced module M with $Z(M)^*{\neq}M{\backslash}\{0\}$, $gr({\Gamma}(M))={\infty}$ if and only if ${\Gamma}(M)$ is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, $x,y{\in}M{\backslash}\{0\}$ are adjacent if and only if $xR{\cap}yR=(0)$. Among other things, it is also observed that ${\Gamma}(M)={\emptyset}$ if and only if M is uniform, ann(M) is a radical ideal, and $Z(M)^*{\neq}M{\backslash}\{0\}$, if and only if ann(M) is prime and $Z(M)^*{\neq}M{\backslash}\{0\}$.

이상혁(李尙爀)(익산(翼算))의 퇴타술과 부분합 복수열 (DUI DUO SHU in LEE SANG HYUK's IKSAN and DOUBLE SEQUENCES of PARTIAL SUMS)

  • 한용현
    • 한국수학사학회지
    • /
    • 제20권3호
    • /
    • pp.1-16
    • /
    • 2007
  • 이상혁(李尙爀)(익산(翼算))의 퇴타술중 삼각타, 사각타 계열에 관한 부분을 조사하고, 익산(翼算)의 결과를 부분합 복수열의 성질로 재해석한다. 유한생성 부분합 복수열의 개념을 도입하고 삼각타, 사각타 계열에 의한 부분합 복수열이 유한생성 부분합 복수열임을 보인다. 단위 부분합 복수열이 부분합 복수열의 연구에 핵심적 역할을 함을 보인다. 또한, 부분합 복수열이 유한생성이 되기 위한 필요충분조건을 구한다. 그리고, 교초적에 대한 곱셈법칙에 대응하는 삼각타적, 삼각낙일적(三角落一積)에 대한 곱셈법칙을 구한다.

  • PDF

A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

  • Cho, In-Ho;Kim, Jae-Gyeom
    • 대한수학회보
    • /
    • 제22권2호
    • /
    • pp.121-126
    • /
    • 1985
  • D.K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if W(R)/I(R)$^{3}$ and W(S)/I(S)$^{3}$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K.I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings. Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is nondegenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$ (V, R) induced by B is an isomorphism), and with a quadratic mapping .phi.:V.rarw.R such that B(x,y)=(.phi.(x+y)-.phi.(x)-.phi.(y))/2 and .phi.(rx)= $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$, .., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2, we reserve the notation [ $a_{11}$, $a_{22}$] for the space.the space.e.e.e.

  • PDF

SINGULAR INNER FUNCTIONS OF $L^{1}-TYPE$

  • Izuchi, Keiji;Niwa, Norio
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.787-811
    • /
    • 1999
  • Let M be the maximal ideal space of the Banach algebra $H^{\infty}$ of bounded analytic functions on the open unit disc $\triangle$. For a positive singular measure ${\mu}\;on\;{\partial\triangle},\;let\;{L_{+}}^1(\mu)$ be the set of measures v with $0\;{\leq}\;{\nu}\;{\ll}\;{\mu}\;and\;{{\psi}_{\nu}}$ the associated singular inner functions. Let $R(\mu)\;and\;R_0(\mu)$ be the union sets of $\{$\mid$\psiv$\mid$\;<\;1\}\;and\;\{$\mid${\psi}_{\nu}$\mid$\;<\;0\}\;in\;M\;{\setminus}\;{\triangle},\;{\nu}\;\in\;{L_{+}}^1(\mu)$, respectively. It is proved that if $S(\mu)\;=\;{\partial\triangle}$, where $S(\mu)$ is the closed support set of $\mu$, then $R(\mu)\;=\;R0(\mu)\;=\;M{\setminus}({\triangle}\;{\cup}\;M(L^{\infty}(\partial\triangle)))$ is generated by $H^{\infty}\;and\;\overline{\psi_{\nu}},\;{\nu}\;{\in}\;{L_1}^{+}(\mu)$. It is proved that %d{\theta}(S(\mu))\;=\;0$ if and only if there exists as Blaschke product b with zeros $\{Zn\}_n$ such that $R(\mu)\;{\subset}\;{$\mid$b$\mid$\;<\;1}\;and\;S(\mu)$ coincides with the set of cluster points of $\{Zn\}_n$. While, we proved that $\mu$ is a sum of finitely many point measure such that $R(\mu)\;{\subset}\;\{$\mid${\psi}_{\lambda}$\mid$\;<\;1}\;and\;S(\lambda)\;=\;S(\mu)$. Also it is studied conditions on \mu for which $R(\mu)\;=\;R0(\mu)$.

  • PDF

THE IDEAL CLASS GROUP OF POLYNOMIAL OVERRINGS OF THE RING OF INTEGERS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제59권3호
    • /
    • pp.571-594
    • /
    • 2022
  • Let D be an integral domain with quotient field K, Pic(D) be the ideal class group of D, and X be an indeterminate. A polynomial overring of D means a subring of K[X] containing D[X]. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain D, defined by the intersection of K[X] and rank-one discrete valuation rings with quotient field K(X), and their ideal class groups. Next, let ℤ be the ring of integers, ℚ be the field of rational numbers, and 𝔊f be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring R of ℤ[X] such that (i) R is a Bezout domain, (ii) R∩ℚ[X] is an almost Dedekind domain, (iii) Pic(R∩ℚ[X]) = $\oplus_{G{\in}G_{f}}$ G, (iv) for each G ∈ 𝔊f, there is a multiplicative subset S of ℤ such that RS ∩ ℚ[X] is a Dedekind domain with Pic(RS ∩ ℚ[X]) = G, and (v) every invertible integral ideal I of R ∩ ℚ[X] can be written uniquely as I = XnQe11···Qekk for some integer n ≥ 0, maximal ideals Qi of R∩ℚ[X], and integers ei ≠ 0. We also completely characterize the almost Dedekind polynomial overrings of ℤ containing Int(ℤ).