• Title/Summary/Keyword: S-Parameter

Search Result 5,710, Processing Time 0.034 seconds

Measuring Young's Modulus of Materials by Using Accelerometer (가속도계를 이용한 재료의 영계수 측정방법)

  • Sohn, Chang-Ho;Park, Jin-Ho;Yoon, Doo-Byung;Chong, Ui-Pil;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1158-1164
    • /
    • 2006
  • For the description of the elastic properties of linear objects a convenient parameter is the ratio of the stress to the strain, a parameter called the Young's modulus of the material. Young's modulus can be used to predict the elongation or compression of an object as long as the stress is less than the yield strength of the material. Conventional method for estimating Young's modulus measured the ratio of stress to corresponding strain below the proportional limit of a material using a tensile testing machine. But the method needs precision specimens and expensive equipment. In this paper, we proposed method for estimating Young's modulus using accelerometer. The basic idea comes from that the wave velocity is different as the Young's modulus. To obtain Young's modulus, a group velocity is obtained. It is difficult to measure group velocity. This is because plate medium has a dispersive characteristics which has different wave speed as frequency. In this paper, we used Wigner-Ville distribution to measure group velocity. To verify the proposed method, steel and acryl plate experiments have been performed. Experimental results show that the proposed method is powerful for estimating Young's modulus.

Measuring Young's Modulus of Materials by using Accelerometer (가속도계를 이용한 재료의 영계수 측정방법)

  • Choi, Young-Chul;Park, Jin-Ho;Yoon, Doo-Byung;Sohn, Chang-Ho;Hwang, Il-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1027-1032
    • /
    • 2007
  • For the description of the elastic properties of linear objects a convenient parameter is the ratio of the stress to the strain, a parameter called the Young's modulus of the material. Young's modulus can be used to predict the elongation or compression of an object as long as the stress is less than the yield strength of the material. Conventional method for estimating Young's modulus measured the ratio of stress to corresponding strain below the proportional limit of a material using a tensile testing machine. But the method needs precision specimens and expensive equipment. In this paper, we proposed method for estimating Young's modulus using accelerometer. The basic idea comes from that the wave velocity is different as the Young's modulus. To obtain Young's modulus, a group velocity is obtained. It is difficult to measure group velocity. This is because plate medium has a dispersive characteristics which has different wave speed as frequency. In this paper, we used Wigner-Ville distribution to measure group velocity. To verify the proposed method, steel and acryl plate experiments have been performed. Experimental results show that the proposed method is powerful for estimating Young's modulus.

  • PDF

Digital current control for BLDC motor using variable structure controller and artificial neural network (가변구조제어기와 인공 신경회로망에 의한 BLDC모터의 디지털 전류제어)

  • 박영배;김대준;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.504-507
    • /
    • 1997
  • It is well known that Variable Structure Controller(VSC) is robust to parameters variation and disturbance but its performance depends on the design parameters such as switching gain and slope of sliding surface. This paper proposes a more robust VSC that is composed of local VSC's. Each local VSC considers the local system dynamics with narrow parameter variation and disturbance. First we optimize the local VSC's by use of Evolution Strategy, and next we use Artificial Neural Network to generalize the local VSC's and construct the overall VSC in order to cover the whole range of parameter variation and disturbance. Simulation on BLDC motor current control shows that the proposed VSC is superior to the conventional VSC.

  • PDF

The Identification of the Magnetic Bearing Control System's Parameters using RCGA (실수코딩 유전알고리즘을 이용한 자기베어링 제어시스템 파라미터의 동정)

  • Jeong, H.H.;Kim, Y.B.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.68-73
    • /
    • 2009
  • The mathematical model has a different response character with the real system because this mathematical model has the modeling errors and the imprecise value of system's parameters. Therefore to find the value of system parameters as possible as near by real value in the model is necessary to design the controlled system. This study concern about the identification method to estimate the parameter for the magnetic bearing system with RCGA(Real Coded Genetic Algorithm). Firstly, we will get the mathematical model from the current amplifier circuit and the magnetic bearing system. Secondly we will get the step response data in this circuit and system. Finally, we will estimate the unknown parameter's value from the data.

  • PDF

A study on the parameter estimation of S-Shaped Software Reliability Growth Models Using SAS JMP (SAS JMP를 이용한 S형 소프트웨어 신뢰도 성장모델에서의 모수 추정에 관한 연구)

  • 문숙경
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.130-140
    • /
    • 1998
  • Studies present a guide to parameter estimation of software reliability models using SAS JMP. In this paper, we consider only software reliability growth model(SRGM), where mean value function has a S-shaped growth curve, such as Yamada et al. model, and ohba inflection model. Besides these stochastic SRGM, deterministic SRGM's, by fitting Logistic and Gompertz growth curve, have been widely used to estimate the error content of software systems. Introductions or guide lines of JMP are concerned. Estimation of parameters of Yamada et al. model and Logistic model is accomplished by using JMP. The differences between Yamada et al. model and Logistic model is accomplished by using JMP. The differences between Yamada et al. model and Logistic model is discussed, along with the variability in the estimates or error sum of squares. This paper have shown that JMP can be an effective tool I these research.

  • PDF

Dielectric and Optical Study of Polymer Nematic Liquid Crystal Composite

  • Manohar, S.;Shukla, S.N.;Chandel, V.S.;Shukla, J.P.;Manohar, R.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.111-115
    • /
    • 2013
  • The dielectric anisotropy and dispersion of the real and imaginary part of the permittivity of commercially important nematic mixture E-24 and its polymer composite were investigated in the frequency range from 1 kHz to 10 MHz, and temperature range $14^{\circ}C$ to $55^{\circ}C$. The percentage optical transmittance and density have also been measured for both the systems. The results have been explained by assuming molecular rotation about the long molecular axis, under a hindering nematic potential. The dielectric anisotropy ${\Delta}{\varepsilon}$ is positive, and the mean dielectric permittivity falls with rising temperature. ${\Delta}{\varepsilon}$ is also used to determine the order parameter with varying temperature.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Analysis of Material Property Requirements on Automotive Stamping Parts (성형 해석에 의한 자동차 부품별 소재 요구 특성 분석)

  • Han S. S.;Kang Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.385-388
    • /
    • 2004
  • The influence of material properties and process parameters on the strain distribution of stamping parts was studied by finite element method. For the parametric study, the investigation of variation of material properties was carried out with tensile test for a dozens of different steel sheets. The friction test for each surface and lubricants conditions are also carried out because the frictional characteristic is important parameter fur sheet metal forming. The geometry of stamping parts was measured by 3D scanner to build the tool model fer the FE analysis. As a result of analysis the major process parameter fer each automotive parts was investigated.

  • PDF

A Study on the New Parameter Estimation of Induction Motor (새로운 유도전동기의 파라미터 추정에 관한 연구)

  • Lee, D.G.;Oh, S.G.;Kim, J.S.;Kim, G.H.;Kim, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.47-48
    • /
    • 2005
  • This paper describes how an Artificial Neural Network(ANN) can be employed to improve a speed estimation in a vector controlled induction motor drive. The system uses the ANN to estimate changes in the motor resistance, which enable the sensorless speed control method to work more accurately. Flux Observer is used for speed estimation in this system. Obviously the accuracy of the speed control of motor is dependent upon how well the parameters of the induction machine are known. These parameters vary with the operating conditions of the motor; both stator resistance(Rs) and rotor resistance(Rr) change with temperature, while the stator leakage inductance varies with load. This paper proposes a parameter compensation technique using artificial neural network for accurate speed estimation of induction motor and simulation results confirm the validity of the proposed scheme.

  • PDF

Parameter Estimation of Linear-FM with Modified sMLE for Radar Signal Active Cancelation Application

  • Choi, Seungkyu;Lee, Chungyong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.372-381
    • /
    • 2014
  • This study examined a radar signal active cancelation technique, which is a theoretical way of achieving stealth by employing a baseband process that involves sampling the incoming hostile radar signal, analyzing its characteristics, and generating countermeasure signals to cancel out the linear-FM signal of the hostile radar signal reflected from the airborne target. To successfully perform an active cancelation, the effects of errors in the countermeasure signal were first analyzed. To generate the countermeasure signal that requires very fast and accurate processing, the down-sampling technique with the suboptimal maximum likelihood estimation (sMLE) scheme was proposed to improve the speed of the estimation process while preserving the estimation accuracy. The simulation results showed that the proposed down-sampling technique using a 2048 FFT size yields substantial power reduction despite its small FFT size and exhibits similar performance to the sMLE scheme using the 32768 FFT size.