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Abstract: This study examined a radar signal active cancelation technique, which is a theoretical 
way of achieving stealth by employing a baseband process that involves sampling the incoming 
hostile radar signal, analyzing its characteristics, and generating countermeasure signals to cancel 
out the linear-FM signal of the hostile radar signal reflected from the airborne target. To 
successfully perform an active cancelation, the effects of errors in the countermeasure signal were 
first analyzed. To generate the countermeasure signal that requires very fast and accurate 
processing, the down-sampling technique with the suboptimal maximum likelihood estimation 
(sMLE) scheme was proposed to improve the speed of the estimation process while preserving the 
estimation accuracy. The simulation results showed that the proposed down-sampling technique 
using a 2048 FFT size yields substantial power reduction despite its small FFT size and exhibits 
similar performance to the sMLE scheme using the 32768 FFT size.     
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1. Introduction 

Many studies have examined the passive cancelation 
technique of a reflected signal at an aircraft for very low 
observability, whereas there are few reports on the active 
cancelation technique. Theoretically, the active cancelation 
technique is considerably more flexible than the passive 
cancelation one because it only needs to duplicate the 
incoming hostile radar signal and reverse its phase by π to 
cancel out the reflected signal [1]. On the other hand, the 
active cancelation technique as a practical implementation 
of stealth must perform several processes simultaneously, 
which involve estimating the fundamental characteristics 
of the incoming hostile radar signal in real-time with 
precision and transmitting the countermeasure signal to the 
correct place with precisely the same power. If these are 
not performed well, the active cancelation technique can 
expose the aircraft to hostile radar. 

As mentioned above, the first step of realizing the 
active cancelation technique is to analyze the incoming 
hostile radar signals because information on them can 
never be achieved in advance. For this purpose, a very fast 
and accurate estimation scheme is needed to extract the 

fundamental parameters of the incoming hostile radar 
signal, and then generate a countermeasure signal that 
corresponds to the reflected hostile radar signal by 
utilizing the estimated parameters, such as frequency, 
bandwidth, phase, and amplitude. In doing so, two 
essential premises need to be followed: real-time and 
accuracy. This means that the countermeasure technique 
should be able to respond and synthesize the related 
signals as quickly as possible with the signal 
characteristics as similar as possible to those of the original 
radar signal such that the detrimental side effects of the 
countermeasure signal is minimized. In addition, the 
effects of inevitable estimation errors and the limit of 
allowable errors in the countermeasure signal must also be 
considered.  

In this study, the linear-FM signal, which is one of the 
essential signal waveform of a radar system, was adopted 
as a basic radar signal. Many studies have examined ways 
of estimating the parameters linear-FM signal [2-8] and 
polynomial phase signal [9-11], a superset of linear-FM 
signal. Among them, this study focused on the suboptimal 
MLE (sMLE) scheme [2] because it is based on the 
general FFT operation with almost the same mean-square-
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error (MSE) performance as the Cramer-Rao bounds 
(CRB) at high SNR. For this reason, it matches the 
premises well and is applicable to the active cancelation 
technique as a parameter estimation scheme. On the other 
hand, it is important to consider that if the number of 
samples increases, the number of FFT sizes should also 
increase. Therefore, to alleviate the FFT size limitation, 
this paper proposes a down-sampling scheme that requires 
a small FFT size and preserves the estimation accuracy of 
the sMLE scheme. The simulation results are given to 
show the advantages of the proposed down-sampling 
scheme in terms of the power of the returned signal and the 
MSE performance of each parameter estimation. 

2. Effects of Parameter Estimation Errors 
in a Countermeasure Signal 

The pulsed linear-FM (LFM) signal adopted by hostile 
radars can be defined as 

 

 ( ) ( )2
0 1 2 , 1 ,j a a t a ts t Ae t T+ +

= ≤ ≤                     (1) 
 

where A  is the amplitude and variables 0a φ= , 

1 02a fπ= , and 2
2 2 /a B Tπ=  denote the simplified phase, 

frequency, and bandwidth parameters, respectively. Here, 
φ  is the phase, 0f  denotes the center frequency, B  
depicts the sweep bandwidth, and T  is the pulse width. 
The distortion of the hostile radar signal due to 
propagation was also assumed to be negligible and all the 
incoming signal to the surface of a target will be reflected 
perfectly. The reflected signal from the target can then be 
expressed as 

 

 ( ) ( )2
0 1 2 , 1 ,j a a t a t

rx t A e t Tπ+ + +
= ≤ ≤                   (2) 

 
where rA  is the amplitude of the reflected signal that can 
be derived by the one-way radar equation given in [12]. 

The ideal countermeasure signal for (2) can be given 
by 

 

 ( ) ( )2
0 1 2 , 1 .j a a t a t

cm rx t A e t T+ +
= ≤ ≤                   (3) 

 
On the other hand, because the knowledge of the 

principal parameters of (2) to the target in advance is 
noncausal, the only viable action is that the target 
generates a countermeasure signal by extracting the 
unknown parameters, rA , 0a , 1a , and 2a , out of the 
reflected signal. The sampled signal of (2) for estimating 
these parameters can be represented as 

 

 [ ] ( ) [ ]
2 2

0 1 2 , 1 ,s sj a a nt a n t
rx n A e n n Nπ ε+ + +

= + ≤ ≤           (4) 
 

where 1/s st f=  is a sampling interval and sN f T= . Here, 
the noise [ ]nε  is assumed to be an i.i.d complex Gaussian 

random variable with a zero mean and variance of 2σ , and 
the input signal-to-noise ratio (SNR) can be defined as 

 
 2 2/ .rSNR A σ=                                 (5) 

 
As mentioned above, the objective is that the target 

generates the countermeasure signal such that it cancels 
out the reflected signal perfectly. Despite this, all 
parameter estimation schemes produce unavoidable 
estimation errors so that the countermeasure signal can 
never cancel the reflected signal out completely. By 
considering these parameter estimation errors, the returned 
signal to the hostile radar can be expressed as  
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×
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           (6) 

 
where e

rA , 0
ea , 1

ea , and 2
ea  are the amplitude, phase, 

frequency, and bandwidth parameters errors, respectively. 
Generally, the second term can be ignored, because e

rA  is 
much smaller than rA  and the accuracy of e

rA  is very high, 
as proven by the simulation. Nevertheless, it is possible 

that 
2 2

0 1 22 cos
2

e e e
s s

r
a a nt a n t

A
π⎛ ⎞+ + −

⎜ ⎟
⎝ ⎠

 in the first term is 

equal to 2 rA , unless 0
ea , 1

ea  and 2
ea  are small enough. For 

this reason, the parameter estimation errors in the 
countermeasure signal can have an adverse effect: the 
amplitude of the returned signal can be larger than 2 .rA  If 

0
ea , 1

ea , 2
ea  are small enough, however, the error 

component 2 2
0 1 2
e e e

s sa a nt a n t+ +  will be infinitesimally 
small so that the amplitude of the returned signal can be 
smaller than the detection threshold of the hostile radar. As 
a result, the hostile radar will not be able to identify the 
target’s existence. Therefore, it is necessary that the 
parameter estimation for the countermeasure signal be 
highly accurate.  

Then, what level of estimation error is acceptable for 
each parameter? To achieve the beneficial effects with the 
countermeasure signal, the absolute value of 

2 2
0 1 22 cos

2

e e e
s s

r
a a nt a n t

A
π⎛ ⎞+ + −

⎜ ⎟
⎝ ⎠

 must be smaller than 

rA : 
 

 
2 2

0 1 22 cos .
2

e e e
s s

r r
a a nt a n t

A A
π⎛ ⎞+ + −

≤⎜ ⎟
⎝ ⎠

             (7) 
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To satisfy this requirement, the absolute value of the 
error component E  needs to be smaller than / 3π , which 
is expressed as  

 
 2 2

0 1 2 3.e e e
s sE a a nt a n t π= + + ≤                  (8) 

 
If it is assumed that the estimation errors of the 

remainder are zero, the upper bound of the maximum 
tolerable error of each parameter can be calculated as 
follows: 

 

 

0

1 0

2 2 2 2

,
3 3

1 ,
3 3 6

1 ,
63 3

e e

e e

s

e e

s
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a f
nt T T

a B
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π π
π

≤ → ≤

≤ ≤ → ≤

≤ = → ≤

                (9) 

 
where 0

ef , eB  and eφ  denote the center frequency, sweep 
bandwidth and phase error, respectively. 

3. Sub-optimal Maximum Likelihood 
Estimation Scheme of Linear-FM 
Signal 

The motivation behind the sMLE scheme [2] lies on 
the optimization problem of the MLE scheme that 
maximizes the function ( )1 2,L a a  as follows: 

 
 ( ) ( )

1 2
1 2 1 2,

ˆ ˆ, arg max , ,
a a

a a L a a=                (10) 

( ) [ ] ( )2 2
1 2

2

1 2
1

where , .s s
N j a nt a n t

n
L a a x n e− +

=

= ∑          (11) 

 
As the 2-dimensional search problem of (10) cannot be 

solved using a simple 1-dimensional FFT method, the 
sMLE scheme exploits the discrete ambiguity function 
(DAF) extracted from (11) [2]:  

 

 ( ) [ ] [ ]*

1
D , , ,s

N
jwnt

n
w x n x n e

τ

τ τ
−

−

=

= +∑x              (12) 

 
where ( )*⋅  denotes the complex conjugate operation and 

2Nτ = . The main advantage of using the DAF, instead 
of ( )1 2,L a a , is that it enables the division of the 2-
dimensional search problem into two sequential 1-
dimensional search problems such that the FFT operation 
becomes applicable. 

Next, the signal inside the DAF is defined as [ ]z n , 
which is represented as a sinusoidal signal whose 
frequency component is only composed of 2a  as follows: 

 

 

[ ] [ ] [ ]
( ) [ ]
( ) [ ]

2 2
2 1 2

2

*

22

2 , 1 2,

s s s s

s

j a t nt a t a t
r

j a nt
r

z n x n x n

A e n

A e n n N

τ τ τ

φ

τ

ε

ε

+ +

+

= +

′= +

′= + ≤ ≤

          (13) 

 
where 2 22 ,sa a tτ= 2 2

1 2 ,s sa t a tφ τ τ= + and [ ] [ ]*n x nε ′ =  

[ ] [ ] [ ] [ ] [ ]* * .n x n n n nε τ τ ε ε ε τ+ + + + +  The DAF can be 

considered such that [ ]z n  is passing through a DFT 
operator, which can be written as 

 

 ( ) [ ]
1

D , , ,s

N
jwnt

n

w z n e
τ

τ
−

−

=

= ∑z                      (14) 

 
and the optimization problem of (10) can be simplified into 
the following problem 

 
 ( ) 2ˆ arg max D , , .

w
w w τ= z                   (15) 

 
Because (15) is considered a traditional MLE scheme 

for a sinusoidal signal [13], we can simply find ŵ  by 
employing the FFT operation to [ ]z n . The resulting 2â  is 
given by 

 

 2
ˆˆ .

2 s

wa
tτ

=                                (16) 

 
Subsequently, 2â  is substituted for 2a  in (10) and 

solve the 1-dimensional optimization problem 
 

 ( )1 2ˆ ˆarg max , ,
w

a L w a=                  (17) 

 

where ( ) [ ]( )2 2
2

2
ˆ

2
1

ˆ, .s s

N
ja n t jwnt

n
L w a x n e e− −

=

= ∑  As the term 

inside 2⋅  is also the same as the DFT operation, we can 
solve (17) and obtain 1̂a  by applying the FFT operation. 

To identify the remaining parameters, ˆ
rA  and 0â , we set 

v̂  as 
 

 [ ] ( )2 2
1 2ˆ ˆ

1

1ˆ ,s s
N j a nt a n t

n
v x n e

N
− +

=

= ∑              (18) 

 
such that both can be calculated simply as 
 

 { } { }ˆRe log
0

ˆˆ ˆIm log , .v
ra v A eπ= − =           (19) 

 
According to the analysis presented in [2], the sMLE 

scheme has an advantage over the MLE scheme in terms 
of its low complexity at the expense of slight MSE 
performance degradation. To show this, the approximated 
MSE expressions of every parameter were introduced into 
the sMLE scheme, which is given by the following:  
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( )

( )

( ) ( )

0
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1 3

4 2

2 5

14 4 1ˆvar ,
3 3 SNR SNR

9617 1ˆvar ,
16 2 SNR SNR

961 ˆˆvar 1 , var .
2 SNR 2SNR

s

s
r

a
N

f
a

N
f

a A
NN
σ

⎛ ⎞≈ +⎜ ⎟× ×⎝ ⎠

⎛ ⎞≈ +⎜ ⎟× ×⎝ ⎠

⎛ ⎞≈ + ≈⎜ ⎟× ×⎝ ⎠

 

  (20) 

4. Improved sMLE Scheme for an Active 
Cancelation Application 

From the viewpoint of active cancelation applications, 
it is preferable to have the FFT size as small as possible to 
pursue the first premise in an active cancelation technique: 
real-time response. On the other hand, it is also more 
preferable that the FFT size be as large as possible, 
because the second premise is the pursuit of parameter 
estimation accuracy. Accordingly, there must be some 
trade-off between the real-time response and parameter 
estimation accuracy. 

If the FFT size FFTN  is assumed to be bounded by 
Th

FFT FFTN N≤  for a quick response, the sMLE scheme itself 
cannot be applied in most cases for the following reasons. 
First and foremost, the sMLE scheme must employ FFTN  
larger than the total number of samples 2N  to 
successfully extract 2â  from [ ]z n . In other words, the 
sMLE scheme can be applied only if FFTN  satisfies the 
condition, 2 .Th

FFT FFTN N N≤ ≤  The second reason is that 
although the above condition is satisfied, the resolution of 
the FFT bin might not be sufficiently high to satisfy the 
requirement of the estimation accuracy for 1̂a  and 2â . 

As shown in Fig. 1, the resolution of the FFT bin is 
determined by two factors: the FFT size and the sampling 
frequency. Their inter-correlation is given as 

 

 .s
res

FFT

f
FFT

N
=                       (21) 

 
Considering the maximum tolerable error of 1

ea  

and 2
ea  in (9), the FFT bin’s resolution for successfully 

estimating both 1̂a  and 2â  is upper-bounded as follows: 
 

 1 .
6resFFT
T

≤                  (22) 

Here, the estimation errors are assumed to be generated 
only by the insufficient resolution of the FFT bin, not by 
the noise effects. Given a fixed sf , the required number of 

FFTN  can be expressed as 
 

 6 .Th
s FFT FFTf T N N≤ ≤                       (23) 

 
Note that if the FFT bin resolution compensation 

scheme, e.g., the quadratic interpolation scheme [14], is 
considered, the required number of FFTN  can be smaller 
than 6 sf T . 

Overall, the problems mentioned above are exclusively 
affected by both the limited FFT size and the 
corresponding estimation accuracy degradation. Then, 
what can be done to overcome the aforementioned 
drawbacks of the sMLE scheme? To answer this, we will 
introduce a scheme that decreases the sampling frequency 
based on the given FFT size. This will enable preservation, 
even enhancement, of the resolution of the FFT bin. 

4.1 Down-sampling for bandwidth 
estimation 

First of all, the simplest down-sampling scheme, which 
decreases only the sampling frequency, was applied. 
Down-sampling with a rate BM  was applied to (13) and 
the down-sampled signal can be expressed as  

 
 [ ] ( ) [ ]22 , 1 ,B sj a mM t

r Bs m A e mM m Lφ ε+ ′= + ≤ ≤        (24) 
 

where 2 BL N M= . Note that [ ]s m  can be considered a 
sinusoidal signal with length L  and sampling frequency 

s Bf M . Here, [ ]BmMε ′  can be modeled as a Gaussian 

distribution with a mean 0 and variance ( )2 2 22 rA σ σ+ . 
Consequently, the resolution of the FFT bin, which was 
modified by down-sampling, is determined as 

 

 1 .s
res

B FFT

f
FFT

M N
=                    (25) 

 
The scheme appears to offer some improvement on the 

resolution of the FFT bin and the corresponding FFT size 
as BM  becomes large. On the other hand, considering the 
MSE of 2â , there is performance degradation proportional 
to the down-sampling rate, BM , which is denoted as 

 

 ( ) ( )
4

2 3 2 2

961ˆvar 1 .
2 4

s B

B

f M
a

SNR SNR N N M
⎛ ⎞≥ +⎜ ⎟× × −⎝ ⎠

    (26) 

 
Here, this study exploits the CRB expression of the 

sinusoidal signal [15], given as 
 

 ( ) ( )
2

2 2

6
var ,

1
cs

c c c

f
a

N N SNR
≥

−
           (27) 

Fig. 1. Pictorial representation of the resolution of FFT
bin. 
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where 
2c

B

NN
M

= , 
( )

4

2 2 22
r

c
r

A
SNR

A σ σ
=

+
, 

c

s
s

B

f
f

M
= , 

and 2 2 sa a Nt= . Therefore, the simple scheme described 
above is unsuitable for reaching both of these active 
cancelation goals. 

The above result provides an intuition that something 
needs to be done further to prevent sacrificing the 
estimation accuracy while decreasing the sampling 
frequency. To this end, the down-sampling scheme in [16] 
is exploited. This scheme forms the down-sampled 
sequence [ ]s m  by accumulating every BM  amount of 

samples of [ ]z n  as follows: 
 

 
[ ] ( )

( )

[ ]
( )

( )
[ ]

2

2
2

1 1
2

1 1

1
2 2 , 0 1,

B B
s

B B

B s B s

m M m M
j a nt

r
n mM n mM

a
j a mM t M t

B r

s m A e n

M A e m m L

φ

φ

ε

ε

+ +
+

= + = +

⎛ ⎞+ + −⎜ ⎟
⎝ ⎠

′= +

′′+ ≤ ≤ −

∑ ∑
  

   (28) 
 

where 2 BL N M=  and [ ] [ ]
( )1

1

B

B

m M

n mM
m nε ε

+

= +

′′ ′= ∑ . Here, 

[ ]mε ′′  has a Gaussian distribution with a mean 0 and a 

variance ( )2 2 22 .B rM A σ σ+  Following the same 

assumption of [ ]s m , as in (24), the resolution of the FFT 
bin modified by the accumulation is given by (25). Unlike 
the simple down-sampling scheme before, considering the 
MSE of 2â , there was negligible performance degradation, 
because the proposed scheme has an SNR gain 

proportional to BM , i.e., 
( )

2 4

2 2 2
.

2
B r

c
B r

M A
SNR

M A σ σ
=

+
 The 

MSE of 2â  of the proposed scheme can be expressed as 
 

 ( ) ( )
4

2 3 2 2

961ˆvar 1 .
2 4

s

B

f
a

SNR SNR N N M
⎛ ⎞≥ +⎜ ⎟× × −⎝ ⎠

    (29) 

 
The range of required BM  to reduce a certain amount 

of FFT size is then derived. Given the FFT size, we can 
calculate the range of BM  as follows: 

 

 
6

,
2

s s
B

FFT

Tf f
M

N Bπ
≤ ≤                   (30) 

 
where the left side comes from the maximum tolerable 

error bound, 1
6

s

B FFT

f
M N T

≤ , and the right one is obtained 

from the Nyquist sampling theorem, 2 ,s

B

f
B

M
π≥  where 

2 .
2
a

Bπ
π

=  Therefore, the proposed down-sampling 

scheme can save the FFT size proportional to the down-

sampling rate BM  that is bounded by (30). For example, if 
the number of samples is 2 5,000N = , then the sMLE 
scheme should employ a FFT size larger than 

16,384FFTN = ; however, the proposed down-sampling 
scheme can be applied by 1,024FFTN =  with negligible 
performance degradation because the number of samples is 
reduced to 2 50BN M =  by the down sampling rate, 

100BM = . Moreover, the computational complexity of the 
sMLE scheme can also be relieved using the proposed 
scheme, because as is already known, the computational 
complexity of the FFT is ( )logi iN N , where iN  is the 
input number of samples. In addition, the well-known error 
compensation scheme for the FFT-based scheme, the 
quadratic interpolation scheme [14], can also be applied to 
the proposed scheme to further enhance the estimation 
accuracy. 

4.2 Down-sampling for frequency 
estimation 

As in the sMLE scheme, the estimated 2â  was first 
applied to (4) and its signal is denoted as  

 

 
( ) [ ] [ ]

( ) [ ]

2 2
2

2 2 2 21 0 2 2

1 ˆ

ˆ ,

s

e
s s s

ja n t

j a nt a a n t ja n t
r

x n x n e

A e n eπ ε

−

+ − + −

=

= +
       (31) 

 
where 2 2 2ˆ ea a a= +  and 1 n N≤ ≤ . Because ( ) [ ]1x n  can 
also be considered to be a sinusoidal signal with length N  
and sampling frequency sf , FFT can be applied to (31) for 
finding 1̂a . Originally, the required FFT size for 
estimating 1̂a  should be larger than N . Nevertheless, a 
smaller FFT size can also be used at the expense of MSE 
performance degradation. In other words, although it is 
still possible to employ a small FFT size to estimate 1̂a  
with partial samples, the related MSE performance will be 
impaired due to the reduced number of samples and the 
degraded FFT bin resolution. For this reason, the 
estimation of 1̂a  using the sMLE scheme itself has a 
limitation to employ the given FFT size. 

Based on the explanation above, this section introduces 
a frequency estimation scheme that can yield small MSE 
performance degradation, even if the available FFT size is 
limited. At first, rN  samples, which are smaller than the 
FFT size that is currently applied, are extracted and FFT 
operation can then be performed to find a coarse 
estimation of 1 1 1ˆ ˆe

c ca a a= + . Using 1ˆ ca , a signal is 

generated, conjugated and then multiplied by ( ) [ ]1x n , 
given as 

 

 

[ ]
( ) [ ] ( ) [ ] [ ]

( )( ) [ ]

1

1 2 0

ˆ

1 1 *

ˆ

, 1 ,

,

c s

e e
c s s

ja nt

j a a nt nt a
r

y n e n N

y n x n y n

A e n
π

ε
− + + +

= ≤ ≤

=

′= +

    (32) 
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where [ ] [ ] 2 2
2 1ˆ ˆ .s c sja n t ja ntn n e eε ε − −′ =  Note that ( ) [ ]1y n  can be 

treated as a sinusoidal signal with frequency 
( )1 2ˆe e

c sa a nt− + . Here, unlike the 2 2
2
e

sa n t−  in (31), the 

component 2 2
2
e

sa n t−  cannot be ignored because the 
difference between 1ˆ

e
ca  and 2

e
sa nt  is small. By taking into 

consideration the problem of obtaining 2a  from the signal 

(13), the estimation of ( )1 2ˆe e
c sa a nt− +  becomes the same 

problem of estimating 2a . Therefore, the same down-
sampling scheme can be employed to overcome the FFT 
size problem. 

Similar to the proposed bandwidth estimation scheme, 
every fM  sample of ( ) [ ]1y n  is accumulated and then 
operated by FFT to make a good estimation of 

( )1 1 2 1ˆ ˆ ˆe e e
f c s fa a a nt a− + + , given as 
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′′ ′= ∑ . Here, [ ]mε ′′  has a Gaussian 

distribution with mean 0 and variance 2
fM σ . The 

estimated 1̂a  can then be given as 

1 1 1 1 2 1ˆ ˆ ˆ ˆe e
c f s fa a a a a nt a= + = − + . Note that 1̂a  includes the 

component, 2
e

sa nt , which is related to the bandwidth 
estimation error. Because 1̂

e
fa  and 2

e
sa nt−  are obtained 

through the FFT operation with a resolution of 1 s

f FFT

f
M N

 

and 1 s

B FFT

f
M N

, respectively, the total FFT bin resolution 

can be modeled as 
 

 1 1max , .s s
res

f FFT B FFT

f f
FFT

M N M N
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

          (34) 

 
Subsequently, to derive the MSE of 1̂a , the MSE of 

1ˆ
e
fa  is first calculated by exploiting the CRB expression in 

(27) as  
 

 ( ) ( )
2

1 2 2

6ˆvar .e s
f

f

f
a

SNR N N M
≥

× −
          (35) 

 
Assuming that n N=  produces the largest 2 2

2
e

sa n t− , 
the MSE of 1̂a  can then be expressed as 

( ) ( ) ( )( )

( ) ( )

2
1 1 2

2

2 2 2 2

ˆ ˆ ˆvar var var

96 1 1 11 .
216 4

e
f s

s

f B

a a a N f

f
SNR N SNRN M N M

≥ +

⎛ ⎞⎛ ⎞⎜ ⎟= + +⎜ ⎟⎜ ⎟× − −⎝ ⎠⎝ ⎠

 

  (36) 
 
Compared to the MSE expression for the sMLE 

scheme in (20), the proposed down-sampling scheme 
exhibits negligible performance degradation. 

As in the estimation of 2â , the next step is to obtain the 
range of required fM  to reduce the FFT size by a certain 
amount. Given the FFT size, the suitable value of fM  can 
be chosen under the following constraint: 

 

 
( )1 2ˆ6

,
e e
c ss

f
FFT

a a ntTf
M

N π

− +
≤ ≤           (37) 

 

where the lower bound is the result of 1
6

s

f FFT

f
M N T

≤  and 

the upper bound is obtained from 
( )1 2ˆ

2
2

e e
c ss

f

a a ntf
M π

− +
≥ . 

If it is assumed that an estimation error only occurs due to 
the low resolution of the FFT bin, the upper bound can 

then be represented by 
2
FFTN

. 

4.3 Influence of the parameter estimation 
errors on the power of the returned 
signal 

The error component to be considered is 0
ea . First of all, 

the estimated 1̂a  and 2â  can be restated as  
 

 ( )
2 2 2

1 1 2 1 1 1

ˆ

ˆ ˆ .

e

e e e
s f

a a a

a a a nt a a a

= +

+ − + = +
        (38) 

 
v̂  can then be rewritten as 
 

 ( )2 2
0 1 2

1

1ˆ ,
e e

s s
N j a a nt a n t

r
n

v A e
N

π+ − −

=

= ∑              (39) 

 
where the noise term in (18) is neglected for notational 
simplicity. Because v̂  includes an accumulation process 
similar to that of the process in (28), the equation can be 
written as 

 

 

( )
( )

1 2
0 1

2
ˆ .

e e
s

s

a a nt
j a N t

rv A e
π

⎛ ⎞− +⎜ ⎟+ + −⎜ ⎟⎜ ⎟
⎝ ⎠                (40) 

 
In this case, the estimated 0â  is given by 

( )
( )1 2

0 0ˆ 1
2

e e
s

s

a a nt
a a N t

− +
= + −  because  { }0ˆ ˆIm loga v=  
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π− . Consequently, considering the noise effect, the 
estimated 0â  can be expressed as 

 

 
( )

( )1 2
0 0 0 0 0ˆ ˆ1 ,

2

e e
s e e

s

a a nt
a a N t a a a

⎛ ⎞− +
⎜ ⎟+ − + = +
⎜ ⎟
⎝ ⎠

  (41) 

 
where 0ˆ

ea  can be viewed as the error caused by the 
neglected noise term. 

Consider E  in total. By putting the above results in E , 
its results can be calculated as 

 

 

( )( )
( )

( )
( )

( )

2 1 2

0

2 2
2 1 2

1
0 1

ˆ
ˆ1

2
ˆ

ˆ
ˆ ˆ1 .

2

e e e
s f s e

s

e e e
s f s s

e
f e e

s f s

a nt a a nt
E N t a

a nt a nt a n t

a
N t a a nt

− − + +
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+ − + +

−
= − + +

     (42) 

 
Assuming that E  has the maximum value at n N= , 

(42) can be simplified to 1
0

ˆ
ˆ

2

e
f e

s

a
E Nt a+ . This shows 

that every parameter estimation error is mutually 
destructive, not mutually constructive. In addition, the 

influence of 1̂

2

e
f

s

a
Nt  on E  will be very small, because the 

accuracy of 1ˆ
e
fa  depends on the resolution of the FFT bin 

(34). Therefore, E  will be affected mainly by 0ˆ
ea , whose 

prime error sources are 1ˆ
e
fa  and 2

ea . 

5. Simulation Results 

The parameter values given in Table 1 were applied 
and a computer simulation was performed with 410  trials. 
In the conventional sMLE scheme, the minimum required 
number of FFT sizes was 16,384FFTN = , because the total 
number of samples was 410N = . For this minimum FFT 
size case, however, the FFT bin resolution of both the 
bandwidth and frequency estimation can be determined to 

be 61.2 10s

FFT

f
N

= × , which cannot satisfy the minimum 

FFT bin resolution bound of 51 3.3 10
6T

= × . Although it is 

important to choose a FFT size larger than 65,536FFTN =  
to satisfy the bound, assuming that the quadratic 
interpolation error compensation scheme is applied to both 
the bandwidth and frequency estimation process, a FFT 
size smaller than 65,536FFTN =  can be employed. 
Accordingly, the FFT size was selected to be 

32,768FFTN =  for the sMLE scheme in the simulation. In 
the proposed scheme, if the FFT size is fixed to 

2,048FFTN = , the value of BM  can be calculated from 

6
2

s s
B

FFT

Tf f
M

N Bπ
≤ ≤ . The value of 50BM =  and 50fM =  

were chosen such that the bound 
6

2
s FFT

f
FFT

Tf N
M

N
≤ ≤  can 

be satisfied. With this choice of BM  and fM , and even 
with the quadratic interpolation scheme, similar 
performance to the conventional sMLE scheme using 

32,768FFTN =  is expected. 
In this simulation, it was assumed that the parameters 

of the reflected signal can be estimated within the number 
of estimation pulses, eN , and immediately generate a 
countermeasure signal to counteract the following 
consecutive reflected signal pN . To accomplish this, we 
also assumed that the pulse repetition interval of the hostile 
radar signal is known in advance. The power of the 
returned signal was calculated based on the assumption 
that pN  pulses are integrated coherently at the hostile 
radar. 

In Fig. 2, the vertical axis represents the amount of 
power reduction with the original returned signal set as a 
reference. As expected, Fig. 2 shows that the performance 
of the proposed scheme with 2,048FFTN =  exhibits 
similar performance as the sMLE scheme with 

32,768FFTN = . When 8,192FFTN =  is applied to the 
bandwidth and frequency estimation process in the sMLE 
scheme, the resulting power reduction is smaller than the 
proposed scheme, as expected. Next, the average of 
absolute error of both the proposed and the conventional 
sMLE schemes were examined. As observed in Fig. 3, the 
total error of the proposed scheme using 2,048FFTN =  is 

Table 1. Simulation Parameters for the Active 
Cancelation Technique. 

Parameters Parameter Value

Radar Peak Power (Kw) 5tP =  

Radar Antenna Gain (dB) 30tG =  

Center Frequency (GHz) 0 2f =  

Sweep Bandwidth (MHz) 20B =  

Phase 6φ π=  

Pulse Width (ns) 500T =  

Range (Km) [ ]6 : 3 : 24R =  

Sampling Frequency (GHz) 010sf f=  

Aircraft Antenna Gain (dB) 30rG =  

Noise Power at Aircraft (dBw) 0 50N = −  

RCS (m2) 1 

Total Number of Sample sN f T=  

FFT Size FFTN = variable 

Number of Estimation Pulses 1eN =  

Number of Return Pulses 20pN =  
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similar to that of the sMLE scheme using 32,768FFTN = , 
corresponding precisely to the result in Fig. 2. In addition, 
E  is similar to 0

ea  in both cases, which supports the 
mathematical analysis. 

Finally, the MSE performance of the proposed and the 
conventional sMLE schemes were examined. Figs. 4 and 5 
show that the MSE performance of the bandwidth and the 
frequency estimation using the proposed scheme with the 

2,048FFTN =  approach to those of the MSE bounds, 
which are similar to those of the sMLE scheme with 

32,768FFTN = . In addition, even the MSE performance of 
the proposed scheme with only 1,024FFTN =  was similar 
to that of the sMLE scheme with 32,768FFTN = . In 
addition, when the number of the FFT sizes is below the 
minimum required number of FFT sizes, 8,192FFTN = , 
the MSE performance of the sMLE scheme is deteriorated 
severely. Fig. 6 shows that the MSE performance of the 
estimated phase using the proposed schemes also shows 
the same trend as that of the proposed bandwidth and the 
frequency estimation schemes. Finally, Fig. 7 shows that 

the proposed schemes and the conventional MLE scheme 
exhibit the same performance such that the effect of 
amplitude estimation error is negligible. 

 

Fig. 2. Amount of power reduction by the
countermeasure signals with reference to the original
returned signal.  

 

 

Fig. 3. Absolute value of total error and each parameter
errors of the proposed scheme and the conventional
sMLE scheme.  

 

 

Fig. 4. Comparison of the bandwidth MSE performance 
between the proposed scheme and the conventional 
sMLE scheme. 

 

 

Fig. 5. Comparison of the frequency MSE performance 
between the proposed scheme and the conventional 
sMLE scheme. 

 

 

Fig. 6. Comparison of the phase MSE performance 
between the proposed scheme and the conventional 
sMLE scheme. 
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6. Conclusion 

To realize an active cancelation technique, a highly-
accurate and high-speed parameter estimation scheme for a 
linear-FM signal based on the sMLE scheme was 
considered. The proposed scheme, which employs a down-
sampling technique to overcome the shortcomings of the 
sMLE scheme, enables a small FFT size to be applied 
while preserving the estimation accuracy. In the active 
cancelation technique, there are other parameters, such as 
the pulse width, pulse repetition frequency and the incident 
angle, which must be estimated simultaneously. Therefore, 
in-depth studies about the estimation of these parameters 
would be an interesting work in the future. 
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