• 제목/요약/키워드: S-Adenosylmethionine

검색결과 87건 처리시간 0.026초

Extension of a 5'- or 3'-end Genomic DNA Sequence by a Single PCR Amplification

  • Jeon, Taeck J.
    • 통합자연과학논문집
    • /
    • 제1권3호
    • /
    • pp.230-233
    • /
    • 2008
  • A simple and rapid method is described for extending the 5'- or 3'-end genomic sequence of a known partial sequence by only a single round of PCR. This method involves digesting and ligating genomic and plasmid DNAs, and amplifying the 5'-upstream or 3'-end downstream sequence of the known DNA sequence, using two primers, one gene specific and the other plasmid specific. A single round of PCR amplification is sufficient to produce gene-specific bands detectable in gels. By using this approach, 5'-end genomic sequence of the D-amoeba sams gene was extended.

  • PDF

독성 Alexandrium tamarense 의 EST 분석 및 삭시톡신 생합성 유전자의 확인 (Expressed Sequence Tag Analysis of Toxic Alexandrium tamarense and Identification of Saxitoxin Biosynthetic Genes)

  • 장만;이주연;정영재;이건섭;김동균;이택견
    • 한국산학기술학회논문지
    • /
    • 제14권7호
    • /
    • pp.3582-3588
    • /
    • 2013
  • A. tamarense로부터 ESTs library를 제작하였다. 이들의 염기서열을 분석하여 STX 생합성 관련 유전자를 클로닝하였다. 연구결과 827 클론의 염기서열이 분석되었고, 564개의 EST가 GenBank에서의 Blast search를 사용하여 기능에 따라 분류되었다. EST에서의 주요 유전자는 cellular organization, cell metabolism, energy, cell cycle과 DNA processing, cellular transport와 transport, cell rescue, defense, death와 aging 및 transcription 등으로 분석되었다. 특히 S-adenosylmethionine synthetase와 H2A histone family 유전자의 발현이 독성 A. tamarense에서 증가하였다. 이러한 결과는 두 개의 유전자가 A. tamarense에서의 삭시톡신 생합성을 검출하기 위한 좋은 바이오마커가 될 수 있음을 보여준다.

Impaired Metabolomics of Sulfur-Containing Substances in Rats Acutely Treated with Carbon Tetrachloride

  • Kim, Sun-Ju;Kwon, Do-Young;Choi, Kwon-Hee;Choi, Dal-Woong;Kim, Young-Chul
    • Toxicological Research
    • /
    • 제24권4호
    • /
    • pp.281-287
    • /
    • 2008
  • Impairment of hepatic metabolism of sulfur-containing amino acids has been known to be linked with induction of liver injury. We determined the early changes in the transsulfuration reactions in liver of rats challenged with a toxic dose of $CCl_4$ (2 mmol/kg, ip). Both hepatic methionine concentration and methionine adenosyltransferase activity were increased, but S-adenosylmethionine level did not change. Hepatic cysteine was increased significantly from 4 h after $CCl_4$ treatment. Glutathione (GSH) concentration in liver was elevated in $4{\sim}8$ h and then returned to normal in accordance with the changes in glutamate cysteine ligase activity. Cysteine dioxygenase activity and hypotaurine concentration were also elevated from 4 h after the treatment. However, plasma GSH concentration was increased progressively, reaching a level at least several fold greater than normal in 24 h. ${\gamma}$-Glutamyltransferase activity in kidney or liver was not altered by $CCl_4$, suggesting that the increase in plasma GSH could not be attributed to a failure of GSH cycling. The results indicate that acute liver injury induced by $CCl_4$ is accompanied with extensive alterations in the metabolomics of sulfurcontaining amino acids and related substances. The major metabolites and products of the transsulfuration pathway, including methionine, cysteine, hypotaurine, and GSH, are all increased in liver and plasma. The physiological significance of the change in the metabolomics of sulfur-containing substances and its role in the induction of liver injury need to be explored in future studies.

대장균 내에서의 Bdi I Methylase 유전자의 클로닝과 발현 (Cloning and Expression of the Bdi Methylase Gene in E. coli)

  • 전희숙;김용석;최경래;노현모
    • 미생물학회지
    • /
    • 제25권1호
    • /
    • pp.40-45
    • /
    • 1987
  • B Brevibacterium divaricatum FERM 5948 균주로부터 Bdi I RIM 체계에 속하는 BdiI methylase 유천자를 클로닝하여 발현을 조사하였다. Bdi I methylase 유전자의 클로닝을 위해 pBR 322의 EcoRI, BamHl, Sal I 3 군데의 클로닝 site를 이 용했고 1 차 형질전환후 나온 플라스미드를 BdiI으로 자른 뒤 ligation 시키지 않고 형질전환시키는 방법을 이용하였다. 유전 자을 가지는 행질전환체의 선별은 Bdi I methylase에 의해 수정된 채조합 플라스미드는 BdiI 제한효소에 방호된다는 것에 기 초하여 선별하였는데 5.6kb의 EcoRI insert DNA를 가지는 pBDIM 116이 Bdil methylase 유전자플 가지는 것으로 판명 되었다. pBDIM 11&을 가지는 숙주셰포에서 추출한 추출용액에는 S-adenosylmethionine이 있으면 BdiI의 인지부위인 A ATCGAT에만 특정한 methylase 활성이 측정되였다. 11개의 제한효소를 이용하이 제한효소지도를 작성하였고, BdiI r restriction -modification 체계에 관해서 도 논의하였다.

  • PDF

Effects of Korean Ginseng Saponin Fraction on the Biosynthesis of Spermidine and Spermine from Bat Prostate and Testis

  • 조윤식;조영대
    • Journal of Ginseng Research
    • /
    • 제22권4호
    • /
    • pp.316-323
    • /
    • 1998
  • To study e(feces of Korean Binseng (Parfax ginseff C. A. hfeyer) total saponin fraction on spermidine and spermine metabolism in rat reproductive systems, we administrated the saponin fractation to rats for 2 years. Then, we determined the activities of S-adenosylmethionine decarboxylase (SAMDC), the quantitation of the enzyme protein and the amounts of spermidine and spermine contents In prostate and testis. In young sexually immature stage, administration of Korean ginseng saponin fraction showed no effect on SAMDC activities. The stimulatory effect on the activities of SAMDC gradually increased and reached maximal activities in test groups of prostate and testis at sexually mature stage. The amounts of SAMDC protein in test groups were paralleled by the changes of SAMDC activities in test groups, indicating that all of the increased activity occurring in administration of ginseng saponin fraction was not due to the activation of SAMDC activity but to the Increase in enzyme protein. However, the spermidine and spermine contents of test groups showed small increase in compared to that of control groups. From these results, we suggest that administration of ginseng saponin fraction alter the spermidine and spermine metabolism in sexually mature and aged reproductive systems in rats.

  • PDF

패혈성 쇼크에서 간의 유황함유 아미노산 대사 (Hepatic Metabolism of Sulfur Amino Acids During Septic Shock)

  • 강건욱;김상겸
    • 약학회지
    • /
    • 제51권6호
    • /
    • pp.383-388
    • /
    • 2007
  • It has been reported that sulfur-containing intermediates or products in the transsulfuration pathway including S-adenosylmethionine, 5'-methylthioadenosine, glutathione and taurine can prevent liver injury mediated by inflammation response induced by lipopolysaccharide (LPS) treatment. The present study examines the modulation of hepatic metabolism of sulfur amino acid in a model of acute sepsis induced by LPS treatment (5 mg/kg, iv). Serum TNF-alpha and hepatotoxic parameters were significantly increased in rats treated with LPS, indicating that LPS results in sepsis at the doses used in this study. LPS also induced oxidative stress determined by increases in malondialdehyde levels and decreases in total oxy-radical scavenging capacities. Hepatic methionine and glutathione concentrations were decreased, but S-adenosylho-mocysteine, cystathionine, cysteine, hypotaurine and taurine concentrations were increased. Hepatic protein expression of methionine adenosyltransferase, cystathionine beta-synthase and cysteine dioxygenase were induced, but gamma-glutamylcysteine ligase catalytic subunit levels were decreased. The results show that sepsis activates transsulfuration pathway from methionine to cysteine, suggesting an increased requirement for methionine during sepsis.

Structural Insights and Mechanistic Understanding of Iron-Molybdenum Cofactor Biosynthesis by NifB in Nitrogenase Assembly Process

  • Wonchull Kang
    • Molecules and Cells
    • /
    • 제46권12호
    • /
    • pp.736-742
    • /
    • 2023
  • NifB, a radical S-adenosylmethionine (SAM) enzyme, is pivotal in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), commonly referred to as the M-cluster. This cofactor, located within the active site of nitrogenase, is essential for the conversion of dinitrogen (N2) to NH3. Recognized as the most intricate metallocluster in nature, FeMo-co biosynthesis involves multiple proteins and a sequence of steps. Of particular significance, NifB directs the fusion of two [Fe4S4] clusters to assemble the 8Fe core, while also incorporating an interstitial carbide. Although NifB has been extensively studied, its molecular mechanisms remain elusive. In this review, we explore recent structural analyses of NifB and provide a comprehensive overview of the established catalytic mechanisms. We propose prospective directions for future research, emphasizing the relevance to biochemistry, agriculture, and environmental science. The goal of this review is to lay a solid foundation for future endeavors aimed at elucidating the atomic details of FeMo-co biosynthesis.

Myxococcus stipitatus DSM 14675의 melithiazol 생합성 유전자 분석 (Analysis of the Melithiazol Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675)

  • 현혜숙;박수현;조경연
    • 한국미생물·생명공학회지
    • /
    • 제44권3호
    • /
    • pp.391-399
    • /
    • 2016
  • Melithiazol은 점액세균 Melitangium lichenicola, Archangium gephyra, Myxococcus stipitatus에 의해 생산되는 항진균 물질이다. M. lichenicola의 melithiazol 생합성 유전자는 이미 알려져 있지만, A. gephyra와 M. stipitatus의 melithiazol 생합성 유전자들은 아직까지 밝혀져 있지 않다. 본 연구에서는 유전체 서열 분석과 돌연변이 분석을 통해 M. stipitatus DSM 14675 균주로부터 37.3 kb 크기의 melithiazol 생합성 유전자군을 발견하였다. 이 유전자군은 9개(MYSTI_04973−MYSTI_04965)의 유전자로 구성되어 있는데, 4개의 polyketide synthase 모듈과 3개의 non-ribosomal peptide synthase 모듈, 그리고 fumarylacetoacetate hydrolase, S-adenosylmethionine-dependent methyltransferase, nitrilase를 암호화하는 것으로 분석되었다. 플라스미드 삽입 돌연변이를 통해 MYSTI_04972 유전자 또는 MYSTI_04973를 불활성화시켰을 때 melithiazol 생산능이 상실되었다. MYSTI_04972부터 MYSTI_04965까지의 8개 유전자가 암호화하는 melithiazol 생합성 모듈의 구성은 M. lichenicola Me l46에서와 유사하였다. 하지만 첫 번째 유전자(MYSTI_04973)에 의해 암호화되는 로딩 모듈의 구성은 M. lichenicola Me l46과 달랐는데, 이러한 차이는 M. stipitatus 균주들이 어떻게 M. lichenicola Me l46과는 다른 구조의 melithiazol 유도체들을 생산하는지 설명해준다.

Comparative Analysis of the Three Classes of Archaeal and Bacterial Ribonucleotide Reductase from Evolutionary Perspective

  • Pangare, Meenal G.;Chandra, Sathees B.
    • Genomics & Informatics
    • /
    • 제8권4호
    • /
    • pp.170-176
    • /
    • 2010
  • The Ribonucleotide reductases (RNR) are essential enzymes that catalyze the conversion of nucleotides to deoxynucleotides in DNA replication and repair in all living organisms. The RNRs operate by a free radical mechanism but differ in the composition of subunit, cofactor required and regulation by allostery. Based on these differences the RNRs are classified into three classesclass I, class II and class III which depend on oxygen, adenosylcobalamin and S-adenosylmethionine with an iron sulfur cluster respectively for radical generation. In this article thirty seven sequences belonging to each of the three classes of RNR were analyzed by using various tools of bioinformatics. Phylogenetic analysis, dot-plot comparisons and motif analysis was done to identify a number of differences in the three classes of RNRs. In this research article, we have attempted to decipher evolutionary relationship between the three classes of RNR by using bioinformatics approach.

Detection of Cytosolic Phosphatidylethanolamine N -Methyltransferase in Rat Brain

  • Kim, Young-Jun;Park, Heung-Soon;Choi, Myung-Un
    • BMB Reports
    • /
    • 제31권2호
    • /
    • pp.170-176
    • /
    • 1998
  • Phosphatidylethanolamine N-methyltransferase (PEMT) is known to be a membrane-associated protein. However, cytosolic PEMT was detected when sufficient amounts of exogenous phospholipids were added in the incubation media. The methylation of phospholipids was measured by the incorporation of the $[^3H]-methyl$ group from S-adenosylmethionine and the methylated phospholipids were analyzed by thinlayer chromatography. The essence of the assay condition for the cytosolic enzyme was the inclusion of 200 ${\mu}g$ of each substrate, phosphatidylethanolamine (PE), phosphatidyl N-monomethylethanolamine (PME) and phosphatidyl N,N-dimethylethanolamine (PDE), in the reaction mixture of 100 ${\mu}l$. The subcellular fractionation of brain PEMT activities revealed that approximately 38.1 % for PME, 39.5% for PDE, and 22.4% for PC formation was present in the cytosolic fraction. The general properties of cytosolic PEMT were characterized and compared with those of neuronal nuclei PEMT.

  • PDF