Browse > Article
http://dx.doi.org/10.4014/mbl.1606.06008

Analysis of the Melithiazol Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675  

Hyun, Hyesook (Department of Biotechnology, Hoseo University)
Park, Soohyun (Department of Biotechnology, Hoseo University)
Cho, Kyungyun (Department of Biotechnology, Hoseo University)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.3, 2016 , pp. 391-399 More about this Journal
Abstract
Melithiazols are antifungal substances produced by the myxobacteria Melitangium lichenicola, Archangium gephyra, and Myxococcus stipitatus. Melithiazol biosynthetic genes have been identified in M. lichenicola, but not in A. gephyra and M. stipitatus until now. We identified a 37.3-kb melithiazol biosynthetic gene cluster from M. stipitatus DSM 14675 using genome sequence analysis and mutational analysis. The cluster is comprised of 9 genes (MYSTI_04973 to MYSTI_04965) that encode 4 polyketide synthase modules, 3 non-ribosomal peptide synthase modules, a putative fumarylacetoacetate hydrolase, a putative S-adenosylmethionine-dependent methyltransferase, and a putative nitrilase. Disruption of the MYSTI_04972 or MYSTI_04973 gene by plasmid insertion resulted in defective melithiazol production. The organization of the melithiazol biosynthetic modules encoded by 8 genes from MYSTI_04972 to MYSTI_04965 was similar to that in M. lichenicola Me l46. However, the loading module encoded by the first gene (MYSTI_04973) was different from that of M. lichenicola Me l46, explaining the difference in the production of melithiazol derivatives between the M. lichenicola Me l46 and M. stipitatus strains.
Keywords
Myxococcus stipitatus; myxobacteria; melithiazol;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 An D, Park S, Lee JS, Cho K. 2014. Production of bioactive substances by a myxobacterium Myxococcusstipitatus KYC4013. Kor. J. Microbiol. Biotechnol. 42: 331–338.   DOI
2 Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T. 2013. antiSMASH 2.0 — a versatile platform for genome mining of secondary metabolite producers. Nucl. Acids Res. 41: W204-W212.   DOI
3 Böhlendorf B, Herrmann M, Hecht H, Sasse F, Forche E, Kunze B, et al. 1999. Antibiotics from gliding bacteria, 85 Melithiazols A– N: new antifungal α-methoxyacrylates from myxobacteria. Eur. J. Org. Chem. 1999: 2601-2608.   DOI
4 Feng Z, Qi J, Tsuge T, Oba Y, Kobayashi T, Suzuki Y, et al. 2005. Construction of a bacterial artificial chromosome library for a myxobacterium of the genus Cystobacter and characterization of an antibiotic biosynthetic gene cluster. Biosci. Biotechnol. Biochem. 69: 1372-1380.   DOI
5 Hagen DC, Bretscher AP, Kaiser D. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64: 284-296.   DOI
6 Huntley S, Kneip S, Treuner-Lange A, Søgaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc. 1: e0010013.
7 Müller I, Müller R. 2006. Biochemical characterization of MelJ and MelK. FEBS J. 273: 3768-3778.   DOI
8 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI
9 Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucl. Acids Res. 43: D222-D226.   DOI
10 Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, et al. 2011. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 39: W339-W346.   DOI
11 Minowa Y, Araki M, Kanehisa M. 2007. Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J. Mol. Biol. 368: 1500–1517.   DOI
12 Ojika M, Suzuki Y, Tsukamoto A, Sakagami Y, Fudou R, Yoshimura T, et al. 1998. Cystothiazoles A and B, new bithiazole-type antibiotics from the myxobacterium Cystobacter fuscus. J. Antibiot. 51: 275-281.   DOI
13 Reichenbach H. 2005. Myxococcales. pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, Garrity GM (ed.), Bergey's Manual of Systematic Bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI., USA.
14 Sasse F, Böhlendorf B, Herrmann M, Kunze B, Forche E, Steinmetz H, et al. 1999. Melithiazols, new beta-methoxyacrylate inhibitors of the respiratory chain isolated from myxobacteria. Production, isolation, physico-chemical and biological properties. J. Antibiot. 52: 721-729.   DOI
15 Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41: 44–51.   DOI
16 Trowitzsch W, Reifenstahl G, Wray V, Gerth K. 1980. Myxothiazol, an antibiotic from Myxococcus fulvus (myxobacterales). II. structure elucidation. J. Antibiot. 33: 1480-1490.   DOI
17 Silakowski B, Schairer HU, Ehret H, Kunze B, Weinig S, Nordsiek G, et al. 1999. New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J. Biol. Chem. 274: 37391-37399.   DOI
18 Suzukia Y, Ojikaa M, Sakagamia Y, Fudou R, Yamanaka S. 1998. Cystothiazoles C-F, new bithiazole-type antibiotics from the myxobacterium Cystobacter fuscus. Tetrahedron 54: 11399–11404.   DOI
19 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
20 Weinig S, Hecht HJ, Mahmud T, Müller R. 2003. Melithiazol biosynthesis: further insights into myxobacterial PKS/NRPS systems and evidence for a new subclass of methyl transferases. Chem. Biol. 10: 939-952.   DOI
21 Weissman KJ, Müller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27: 1276-1295.   DOI
22 Williams GJ. 2013. Engineering polyketide synthases and nonribosomal peptide synthetases. Curr. Opin. Struct. Biol. 23: 603-612.   DOI
23 Yadav G, Gokhale RS, Mohanty D. 2003. Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J. Mol. Biol. 328: 335–363.   DOI