DOI QR코드

DOI QR Code

Comparative Analysis of the Three Classes of Archaeal and Bacterial Ribonucleotide Reductase from Evolutionary Perspective

  • Pangare, Meenal G. (Department of Biological, Chemical and Physical Sciences, Roosevelt University) ;
  • Chandra, Sathees B. (Department of Biological, Chemical and Physical Sciences, Roosevelt University)
  • Accepted : 2010.11.01
  • Published : 2010.12.31

Abstract

The Ribonucleotide reductases (RNR) are essential enzymes that catalyze the conversion of nucleotides to deoxynucleotides in DNA replication and repair in all living organisms. The RNRs operate by a free radical mechanism but differ in the composition of subunit, cofactor required and regulation by allostery. Based on these differences the RNRs are classified into three classesclass I, class II and class III which depend on oxygen, adenosylcobalamin and S-adenosylmethionine with an iron sulfur cluster respectively for radical generation. In this article thirty seven sequences belonging to each of the three classes of RNR were analyzed by using various tools of bioinformatics. Phylogenetic analysis, dot-plot comparisons and motif analysis was done to identify a number of differences in the three classes of RNRs. In this research article, we have attempted to decipher evolutionary relationship between the three classes of RNR by using bioinformatics approach.

Keywords

References

  1. Aravind, L., Wolf, Y.I., and Koonin, E.V. (2000). The ATP-cone: an evolutionarily mobile, ATP-binding regulatory domain. J. Mol. Microbiol. Biotechnol. 2, 191-194.
  2. Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucl. Acids Res. 34, W369-373. https://doi.org/10.1093/nar/gkl198
  3. Benner, S.A., Ellington, A.D., and Tauer, A. (1989).Modern metabolism as a palimpsest of the RNA world. Proc. Natl. Acad. Sci. USA 86, 7054-7058. https://doi.org/10.1073/pnas.86.18.7054
  4. Blakley, R. (1978). Ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Methods Enzymol. 51, 246-259. https://doi.org/10.1016/S0076-6879(78)51034-3
  5. Booker, S., Licht, S., Broderick, J., and Stubbe, J. (1994). Coenzyme B12-dependent ribonucleotide reductase: evidence for the participation of five cysteine residues in ribonucleotide reduction. Biochemistry 33, 12676-12685. https://doi.org/10.1021/bi00208a019
  6. Borovok, I., Gorovitz, B., Yanku, M., Schreiber, R., and Gust, B. (2004). Alternative oxygen-dependent and oxygen-independent ribonucleotide reductases in Streptomyces : cross-regulation and physiological role in response to oxygen limitation. Mol. Microbiol. 54, 1022-1035. https://doi.org/10.1111/j.1365-2958.2004.04325.x
  7. Crona, M., Furrer, E., Torrents, E., Edgell, D.R., and Sjoberg, B.M. (2010). Subunit and small-molecule interaction of ribonucleotide reductases via surface plasmon resonance biosensor analyses. Protein Eng. Des. Sel. 23, 633-641. https://doi.org/10.1093/protein/gzq035
  8. Duan, J., Liuzzi, M., Lambert, M., Lawetz C., Moss, N., Jaramillo, J., Gauthier, J., Déziel, R., and Cordingley, M.G. (1998). Antiviral activity of a selective ribonucleotide reductase inhibitor against acyclovir resistant herpes simplex virus type 1 in vivo. Antimicrob. Agents Chemother. 42, 1629-1635.
  9. Eriksson, M., Jordan, A., and Eklund, H. (1998). Structure of salmonella typhimurium nrdF ribonucleotide reductase in its oxidized and reduced forms. Biochemistry 37 (38), 13359-13369. https://doi.org/10.1021/bi981380s
  10. Felsenstein, J. (1989). PHYLIP phylogeny inference package. Cladistics 5, 164-166.
  11. Fontecave, M., Nordlund, P., Eklund, H., and Reichard, P. (1992). The redox centers of ribonucleotide reductase of Escherichia coli. Adv. Enzymol. Rela.t Areas Mo.l Biol. 65, 147-183.
  12. Jordan, A., and Reichard, P. (1998). Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71-98. https://doi.org/10.1146/annurev.biochem.67.1.71
  13. Jordan, A., Torrents, E., Sala, I., Hellman, U., Gibert, I., and Reichard, P. (1999). Ribonucleotide reduction in Pseudomonas species : simultaneous presence of active enzymes from different classes. J. Bacteriol. 181, 3974-3980.
  14. Landes, C., Henaut, A., and Risler, J. (1998). Dot-Plot comparison by multivariate analysis (DOCMA): A tool for classifying protein sequences. Bioinformatics 9, 191-196.
  15. Licht, S., and Stubbe, J. (1999). Mechanistic investigations of ribonucleotide reductases. Comprehensive Natural Products Chemistry (Vol. 5) (Barton, S.D. et al., eds.), p. 163, Elsevier Science
  16. Lundin, L., Torrents, E., Poole, A.M., and Sjoberg, B.M. (2009) RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank. BMC Genomics 10, 589. https://doi.org/10.1186/1471-2164-10-589
  17. Nordlund, P., and Reichard, P. (2006). Ribonucleotide reductases. Annu. Rev. Biochem. 75, 681-706. https://doi.org/10.1146/annurev.biochem.75.103004.142443
  18. Ollagnier, S., Sun, X.Y., Schmidt P.P., Atta, M., Mulliez, E., Lepape, L., Eliasson, R., Graslund, A., Fontecave, M., Reichard, P., and Sjoberg, B.M. (1996). The Free Radical of the Anaerobic Ribonucleotide Reductase from Escherichia coli Is at Glycine 681. J. Biol. Chem. 271, 6827-6831. https://doi.org/10.1074/jbc.271.12.6827
  19. Page, R. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357-358.
  20. Panagou, D., Orr, M.D., Dunstone, J.R., and Blakley, R.L. (1972). A monomeric, allosteric enzyme with a single polypeptide chain. Ribonucleotide reductase of Lactobacillus leichmannii. Biochemistry 11, 2378-2388. https://doi.org/10.1021/bi00762a025
  21. Plunkett, W., Huang, P., Searcy, C.E., and Gandhi, V. (1996). Gemcitabine: preclinical pharmacology and mechanisms of action. Semin. Oncol. 23, 3-15.
  22. Reichard, P. (1993). From RNA to DNA, why so many ribonucleotide reductases? Science. 260, 1773-1777. https://doi.org/10.1126/science.8511586
  23. Rice, P., and Longden, I. (2000). Emboss: the European Molecular Open Software Suite. Trends in Genet. 16, 276-277. https://doi.org/10.1016/S0168-9525(00)02024-2
  24. Rodionov, D.A., and Gelfand, M.S. (2005). Identification of a bacterial regulatory system for ribonucleotide reductases by phylogenetic profiling. Trends Genet. 21, 385-389. https://doi.org/10.1016/j.tig.2005.05.011
  25. Sjoberg, B.M. (1997). Ribonucleotide reductases-A group of enzymes with different metallosites and a similar reaction mechanism. Struct. Bond 88, 139-173.
  26. Stubbe, J., Ge, J., and Yee, C.S. (2001). The evolution of ribonucleotide reduction revisited. Trends in Biochemical Sciences 26, 93-99. https://doi.org/10.1016/S0968-0004(00)01764-3
  27. Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F., and Higgins, D. (1997). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  28. Torrents, E., Aloy, P., Gibert, I., and Rodriguez-Trelles, F. (2002). Ribonucleotide reductases: divergent evolution of an ancient enzyme. J. Mol. Evol. 55, 138-152. https://doi.org/10.1007/s00239-002-2311-7
  29. Torrents, E., Grinberg, I., Gorovitz-Harris, B., Lundstrom, H., Borovok, I., Aharonowitz, Y., Sjoberg, B.M., and Cohen, G. (2007). NrdR controls differential expression of the Escherichia coli ribonucleotide reductase genes. J. Bacteriol. 189, 5012-5021. https://doi.org/10.1128/JB.00440-07
  30. Uhlin, U., and Eklund, H. (1994). Structure of ribonucleotide reductase protein R1. Nature 370, 533-539. https://doi.org/10.1038/370533a0