• Title/Summary/Keyword: S waves

Search Result 1,967, Processing Time 0.029 seconds

Two Overarching Teleconnection Mechanisms Affecting the Prediction of the 2018 Korean Heat Waves

  • Wie, Jieun;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.511-519
    • /
    • 2022
  • Given the significant social and economic impact caused by heat waves, there is a pressing need to predict them with high accuracy and reliability. In this study, we analyzed the real-time forecast data from six models constituting the Subseasonal-to-Seasonal (S2S) prediction project, to elucidate the key mechanisms contributing to the prediction of the recent record-breaking Korean heat wave event in 2018. Weekly anomalies were first obtained by subtracting the 2017-2020 mean values for both S2S model simulations and observations. By comparing four Korean heat-wave-related indices from S2S models to the observed data, we aimed to identify key climate processes affecting prediction accuracy. The results showed that superior performance at predicting the 2018 Korean heat wave was achieved when the model showed better prediction performance for the anomalous anticyclonic activity in the upper troposphere of Eastern Europe and the cyclonic circulation over the Western North Pacific (WNP) region compared to the observed data. Furthermore, the development of upper-tropospheric anticyclones in Eastern Europe was closely related to global warming and the occurrence of La Niña events. The anomalous cyclonic flow in the WNP region coincided with enhancements in Madden-Julian oscillation phases 4-6. Our results indicate that, for the accurate prediction of heat waves, such as the 2018 Korean heat wave, it is imperative for the S2S models to realistically reproduce the variabilities over the Eastern Europe and WNP regions.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model (LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Research on the emission of electromagnetic waves in ambulance (구급차량 내 전자파 방출에 관한 조사)

  • Yun, Jong-Geun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose: The study aims to provide basic data to enhance the health of paramedics responsible for patient transport and treatment by analyzing the exposure level of paramedics to electromagnetic waves generated by electric devices used in ambulances. Methods: The study measured electromagnetic waves in ambulances in N region from July to December 2018. ME3030B produced by German Gigahertz Solutions was used to measure these waves and the maximum value was selected by moving it slowly in various directions. Each measurement part was selected and the mean value was calculated by repeatedly measuring at 10-minute intervals three times in total: $1^{st}$, $2^{nd}$, and $3^{rd}$ phase. Results: Among the electrical devices installed in the patient room of the ambulance measured at distances of 1 cm or 30 cm, results showed a high level of electric waves at the inverter ($26.25{\pm}39V/m$) and high level of electromagnetic waves ($564.00{\pm}31.75nT$) at the ozone sterilizer. According to measurements toward the front near the driver's seat, results indicated high levels of electric waves ($3.67{\pm}1.15V/m$) and electromagnetic waves ($450.00{\pm}19.52nT$) at the black box hard drive. Conclusion: Electromagnetic waves within the ambulance were stable and not beyond the range that might impact human health. However, in the case of the black box hard drive ($3.67{\pm}1.15V/m$, $450.00{\pm}19.52nT$) located under the passenger seat, it may have a direct effect on the human body and, thus it is necessary to move it to a storage area further away from the paramedics to minimized the impact.

TWO-PHASE WAVE PROPAGATIONS PREDICTED BY HLL SCHEME WITH INTERFACIAL FRICTION TERMS (계면마찰항을 고려한 이상유동에서 파동전파에 대한 수치적 연구)

  • Yeom, G.S.;Chang, K.S.;Chung, M.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.115-119
    • /
    • 2009
  • We numerically investigated propagation of various waves in the two-phase flows such as sound wave, shock wave, rarefaction wave, and contact discontinuity in terms of pressure, void fraction, velocity and density of the two phases. The waves have been generated by a hydrodynamic shock tube, a pair of symmetric impulsive expansion, impulsive pressure and impulsive void waves. The six compressible two-fluid two-phase conservation laws with interfacial friction terms have been solved in two fractional steps. The first PDE Operator is solved by the HLL scheme and the second Source Operator by the semi-implicit stiff ODE solver. In the HLL scheme, the fastest wave speeds were estimated by the analytic eigenvalues of an approximate Jacobian matrix. We have discussed how the interfacial friction terms affect the wave structures in the numerical solution.

  • PDF

Behavior Analysis of a Tension Leg Platform in Current and Waves (조류와 파랑 중의 인장계류식 해양구조물의 거동해석)

  • Lee, S.C.;Park, C.H.;Bae, S.Y.;Goo, J.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.64-71
    • /
    • 2011
  • The Tension Leg Platform(TLP) is restrained from oscillating vertically by tethers(or tendons), which are vertical anchor lines tensioned by the platform buoyancy larger than the platform weight. Thus a TLP is a compliant structure which allows lateral movements of surge, sway, and yaw but restrains heave, pitch, roll. In this paper, the motions of a TLP in current and waves were investigated. Hydrodynamic forces and wave exciting forces acting on the TLP were evaluated using the three dimensional source distribution method. The motion responses and tension variations of the TLP were analyzed in the case of including current or not including one in regular waves and effects of current on the TLP were investigated.

Submerged Porous Plate Wave Absorber

  • PARK W.T.;LEE S.H.;KEE S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.9-14
    • /
    • 2005
  • In the present paper, the wave absorbing performance of the fully submerged horizontal porous plates has been investigated, numerically and experimentally. The submerged porous system is composed of multi-layered horizontal porous plates that are clamped at the vertical setwall, which are slightly inclined and placed vertically, in parallel, with spacing. The hydrodynamic interaction of incident waves with the rigid porous multi-layered plates was formulated within the context of linear wave-body interaction theory and Darcy's law. In order to validate the effectiveness of the present computing code, the numerical results were compared with the analytical and experimental results. It is found that triple horizontal porous plates with slight inclination, if properly tuned for wave energy dissipation against the standing waves in front of the vertical wall, can have high performances in reducing the reflected wave amplitudes against the incident waves over a wide range of wave frequency.

Mode Selection of Leaky Lamb Waves in Steel Plate

  • Lee, Ju-Won;Kim, Jeong-Tae;Cho, Hyun-Man;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • The dispersion and attenuation of Lamb and Leaky Lamb waves propagating in a 1 mm-thick steel plate were investigated. For acquiring a long(or large) range inspection capability, the fundamental symmetric and anti-symmetric wave modes(S0 and A0) over law frequencies were studied. Based on the dispersion curves, as well as pitch-catch and multi-mode simulations, it was shown that the S0 mode over law frequencies is the proper mode to minimize the dispersion and attenuation. In addition, it was shown that the S0 mode couldbe easily distinguished under multi-mode simulation since it has a larger group velocity than the A0 mode.

Terahertz-based Security Screening System Technology (테라헤르츠파 기반 대인 보안검색 기술의 동향과 발전 전망)

  • Lee, I.M.;Lee, E.S.;Kim, M.G.;Choi, D.H.;Park, D.W.;Shin, J.H.;Kim, Y.H.;Kim, J.S.;Cho, J.C.;Kim, Y.H.;Jo, S.;Kwak, D.Y.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.2
    • /
    • pp.11-20
    • /
    • 2022
  • Terahertz electromagnetic waves are considered the waves for the next generation of security checking technology. They can penetrate opaque materials, such as plastics, fibers, papers, and leathers. In addition, they are harmless to humans they cannot penetrate human skins. Moreover, because their frequencies are higher than those of millimeter waves, higher resolution and more detailed information is expected than the millimeter wave-based technologies In this study, we describe the trends and prospectives of terahertz technology as security checking technology that can be directly applied to a human body.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF