DOI QR코드

DOI QR Code

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model

LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석

  • Cho, Yong Jun (Department of Civil Engineering, University of Seoul)
  • 조용준 (서울시립대학교 토목공학과)
  • Received : 2020.01.18
  • Accepted : 2020.02.17
  • Published : 2020.02.28

Abstract

In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

너울이 우세한 온화한 해양환경에서 출현하는 beach cusp에서의 경계층 streaming 수리특성을 살펴보기 위해 edge waves의 천수 과정을 수치 모의하였다. Beach cusp을 유지하는 것으로 알려진 synchronous edge waves는 같은 주기와 파고를 지니는 두 개의 Cnoidal wave가 전면해역에서 비스듬히 조우 되도록 조파하여 재현하였다. Beach cusp의 진폭 AB과 파장 LB은 맹방 해변에서 수행된 관측결과를 토대로 각각 1.25 m, 18 m로 선정하였다. 모의결과 천수 각 단계에서 예외 없이 경계층 streaming을 관측할 수 있었으며 최대 경계층 streaming은 사주 정점에서 발생하였다. 주기가 가장 짧은 RUN 1의 경우 그 세기는 약 0.32 m/s 내외에 분포하며 이러한 수치는 free stream 유속 u 진폭의 두 배에 달하는 것으로 wave Reynolds 응력에 기반한 Longuet-Higgins(1957)의 해석 해와는 상당한 차이를 보였다. 수치 모의과정에서 온화한 해양환경에서 해빈이 복원되는 과정을 특정할 수 있었으며 이 과정을 정리하면 다음과 같다: 너울로 구성된 파랑 무리에서 성분 파랑 간의 공진성 상호작용으로 생성된 외 중력파가 쇄파선 인근에 도달하는 경우 중력으로 인한 가속이 더해진 Phase II 파랑 궤도 운동으로 수면 가까이 상승한 많은 모래가 쇄파 시 발생하는 파 마루로부터 시작된 up-rush에 의해 전 빈 정점 가까이 이동하며 이 과정에서 발생하는 침투로 인해 퇴적되는 것으로 모의 되었다.

Keywords

References

  1. Chang, P.S. and Cho, Y.J. (2019). Preliminary study on the development of a platform for the optimization of beach stabilization measures against beach erosion III - centering on the effects of random Waves occurring during the unit observation period, and infra-gravity waves of bound mode, and boundary layer streaming on the sediment transport. Journal of Korean Society of Coastal and Ocean Engineers, 31(6), 434-449 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.6.434
  2. Cho, Y.J. (2019a). Numerical analysis of the beach stabilization effect of an asymmetric ripple mat. Journal of Korean Society of Coastal and Ocean Engineers, 31(4), 209-220 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.4.209
  3. Cho, Y.J. (2019b). Grand circulation process of beach cusp and its seasonal variation at the Mang-Bang beach from the perspective of trapped mode Edge waves as the driving mechanism of beach cusp formation. Journal of Korean Society of Coastal and Ocean Engineers, 31(5), 265-277 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.5.265
  4. Cho, Y.J. (2019c). Preliminary study on the development of a platform for the optimization of beach stabilization measures against beach erosion II - centering on the development of physics-based morphology model for the estimation of an erosion rate of nourished beach. Journal of Korean Society of Coastal and Ocean Engineers, 31(5), 320-333 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.5.320
  5. Cho, Y.J. and Bae. J.H. (2019). On the feasibility of freak waves formation within the harbor due to the presence of Infra-gravity waves of bound mode underlying the ever-present swells. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 17-27 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.1.17
  6. Cho, Y.J. and Kim, G.S. (2008). Development of 3-D nonlinear wave driver using SPH. Journal of the Korean Society of Civil Engineers B, 28(5B), 559-573 (in Korean).
  7. Cho, Y.J., Kim, G.S. and Ryu, H.S. (2008). Suspension of sediment over swash zone. Journal of the Korean Society of Civil Engineers B, 28(1B), 95-109 (in Korean).
  8. Cho, Y.J. and Kim, I.H. (2019). Preliminary study on the development of platform for the selection of an optimal beach stabilization measures against the beach erosion-centering on the yearly sediment budget of the Mang-Bang beach. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 28-39 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.1.28
  9. Cho, Y.J., Kim, I.H. and Cho, Y.J. (2019). Numerical analysis of the grand circulation process of Mang-Bang beach-centered on the shoreline change from 2017. 4. 26 to 2018. 4. 20. Journal of Korean Society of Coastal and Ocean Engineers, 31(3), 101-114 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.3.101
  10. Cho, Y.J. and Lee, H. (2007). Numerical analysis of nonlinear shoaling characteristics over surf zone using SPH and lagrangian dynamic smagorinsky model. Journal of Korean Society of Coastal and Ocean Engineers, 19(1), 81-96 (in Korean).
  11. Eckart, C. (1951). Surface waves on water of variable depth, Wave Report 100, University of California, Scripps Institution of Oceanography, Wave Report 100, SIO Ref No 51-12.
  12. Guza, R.T. (1974). Excitation of edge waves and their role in the formation of beach cusps. University of California, San diego, Ph.D., 1974 Oceanography.
  13. Hasselmann, K. (1967). A criterion for nonlinear wave stability. Journal of Fluid Mechanics, 30(4), 737-739. https://doi.org/10.1017/S0022112067001739
  14. Lee, H.J. and Cho, Y.J. (2019). Numerical analysis of synchronous Edge wave known as the driving mechanism of beach cusp. Journal of Korean Society of Coastal and Ocean Engineers, 31(6), 409-422 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.6.409
  15. Longuet-Higgins, M.S. (1957). The mechanics of the boundary layer near the bottom in a progressive wave. Proc. 6th International Conference on Coastal Engineering, Gainesville, Palm Beach and Miami Beach, Florida, December, 184-193.
  16. Losada, I.J., Gonzalez-Ondina, J.M., Diaz, G. and Gonzalez, E.M. (2008). Numerical simulation of transient nonlinear response of semi-enclosed water bodies: model description and experimental validation. Coastal Engineering, 55(1), 21-34. https://doi.org/10.1016/j.coastaleng.2007.06.002
  17. Meneveau, C., Lund, T.S. and Cabot, W.H. (1996). A Lagrangian dynamic sub-gird scale model of turbulence. Journal of Fluid Mechanics, 319, 353-385. https://doi.org/10.1017/S0022112096007379
  18. Phillips, O.M. (1980). The Dynamics of the Upper Ocean. 2nd edition. Cambridge, Cambridge University Press.
  19. Pope, S.B. (2004). Ten equations concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6(35), 1-24. https://doi.org/10.1088/1367-2630/6/1/001
  20. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Monthly Weather Rev NWB, 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  21. Yoshizawa, A. and Horiuti, K. (1985). A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. Journal of the Physical Society of Japan, 54(8), 2834-2839. https://doi.org/10.1143/JPSJ.54.2834