Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves

SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교

  • Lee, Chang-Min (Department of Geophysics, Kangwon National University) ;
  • Kim, Ki-Young (Department of Geophysics, Kangwon National University)
  • 이창민 (강원대학교 지구물리학과) ;
  • 김기영 (강원대학교 지구물리학과)
  • Published : 2005.06.01

Abstract

Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

SH파 굴절법 토모그래피와 표면파 분산자료 역산을 통하여 2차원 S파 속도단면을 각각 구하였고, 비교 목적으로 P파 속도단면도 함께 구하였다. P파와 표면파는 지표에 수직하게 타격하여 발생시켰으며, 100 Hz와 4.5 Hz 수직지오폰 24개로 각각 수신하였다. SH파는 50 kg 나무원목의 좌우를 타격하여 발생시켰고, 8 Hz 수평 지오폰으로 수신하였으며, 좌측타격에서 우측타격을 빼주어 SH파 신호를 강화하였다. 초동주시 토모그램과 표면파 분산곡선으로부터 역산과정을 거쳐서 구한 S파 속도단면을 비교한 결과, 두 단면의 전체적인 양상은 서로 비슷하지만, 표면파 역산으로 구한 S파 속도단면이 전반적으로 작은 값을 갖는 경향을 보인다. 잡음에 취약한 SH파는 P파 및 PS 변환파 도달 이후에 기록되어 초동선택이 어려운 문제가 있으며, 균질한 수평모델을 가정하는 표면파의 분산곡선 역산은 측방 변화가 심한 곳에서 지하구조를 정확히 밝히는데 한계가 있음을 보인다.

Keywords

References

  1. 김기영, 김동훈, 2002, 경주시 감산사 단층 부근에서의 탄성파 굴절법 조사, 지구물리, 5, 41-50
  2. 정희옥, 1999, 표면파 분산의 역산에 영향을 미치는 요인들에 관한 연구. 한국지구과학회지, 20(6), 613-619
  3. Aki, K. and Richard, P.G., 1980, Quantitative Seismology, theory and Methods (Vol. 2). W.H. Freeman and Co., New York. 932
  4. Docherty, P., C. L, Stachura, V. J. and Tweeton, D. R., 1989, Application of refraction tomography to map extent of blast-induced fracturing: 59th Ann. Internat. Mtg., Soc. of Expl. Geophy., 360
  5. Hampson, D. and Russel, B., 1984, First-break interpretation using generalized linear inversion: J. Can. Soc. Expl. Geophys., 20, 40-54
  6. Hayashi, K., Suzuki, H., 2004, CMP cross-correlation analysis of multi-channel surface-wave data, Exploration Geophysics, 35, 13-19
  7. Kaczmarz, S., 1937, Angenaherte Auflosung von Systemen linearer Gleichungen, Bulletin de l'Academie Polonaise des Sciences et des Lettres, A35, 600-609
  8. Lanz, E., Maurer, H. and Green, A. G., 1998, Refraction tomography over a buried waste disposal site. Geophysics, Society of Exploration Geophysicists, 63, 1414-1433
  9. Lo, T. and Inderwiesen, P, 1994, Fundamentals of Seismic Tomography. Tulsa, Society of Exploration Geophysicists, 178
  10. Nazarian, S., Stokoe, K.H., and Hudson, W.R., 1983, Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems: Transport. Res. Record, 930, 38-45
  11. Park, C.B., Miller, R.D., and Xia, J., 1999, Multichannel analysis of surface waves, Geophysics, 64, 800-808 https://doi.org/10.1190/1.1444590
  12. Radon, J., 1917, uber die Bestimmung von Functionen durch ihre integralwerte langs gewisser Manningfaltig- keiten, Bu. Succhass. Akad. Leipzig.: Math. K., 69, 262
  13. Xia, J., Miller, R.D., and Park, C.B., 1999, Configuration of near surface shear wave velocity by inverting surface wave, Proceedings of the symposium on the application of geophysics to engineering and environmental problems' 99, 95-104