• Title/Summary/Keyword: S typhimurium

Search Result 927, Processing Time 0.025 seconds

Salmonella Promotes ASC Oligomerization-dependent Caspase-1 Activation

  • Hwang, Inhwa;Park, Sangjun;Hong, Sujeong;Kim, Eun-Hee;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.284-290
    • /
    • 2012
  • Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-$1{\beta}$) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.

A tdcA Mutation Reduces the Invasive Ability of Salmonella enterica Serovar Typhimurium

  • Kim, Minjeong;Lim, Sangyong;Kim, Dongho;Choy, Hyon E.;Ryu, Sangryeol
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.389-395
    • /
    • 2009
  • We previously observed that the transcription of some flagellar genes decreased in Salmonella Typhimurium tdcA mutant, which is a gene encoding the transcriptional activator of the tdc operon. Since flagella-mediated bacterial motility accelerates the invasion of Salmonella, we have examined the effect of tdcA mutation on the invasive ability as well as the flagellar biosynthesis in S. Typhimurium. A tdcA mutation caused defects in motility and formation of flagellin protein, FliC in S. Typhimurium. Invasion assays in the presence of a centrifugal force confirmed that the defect of flagellum synthesis decreases the ability of Salmonella to invade into cultured epithelial cells. In addition, we also found that the expression of Salmonella pathogenicity island 1 (SPI1) genes required for Salmonella invasion was down-regulated in the tdcA mutant because of the decreased expression of fliZ, a positive regulator of SPI1 transcriptional activator, hilA. Finally, the virulence of a S. Typhimurium tdcA mutant was attenuated compared to a wild type when administered orally. This study implies the role of tdcA in the invasion process of S. Typhimurium.

Combination Effects of Potassium Sorbate and Sodium Benzoate with sodium Chloride on the Growth Inhibition of Escherichia coli and Salmonella typhimurium (Escherichia coli 와 Salmonella typhimurium 의 생육억제에 미치는 식염과 Potassium Sorbate, Sodium Benzoate의 병용효과)

  • Cho, Nam-Sook;Yang, Yeo-Young;Choi, Eon-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.249-254
    • /
    • 1986
  • An experiment was performed to investigate the combined effect of preservatives and the synergistic effect of sodium chloride to them on the inhibition of bacterial growth. Escherichia coli and Salmonella typhimurium were cultured with or without shaking in liquid media (pH 6) of tryptone-glucose-yeast extract or tryptic soy broth which contained 0.1% potassium sorbate and/or 0.03% sodium benzoate, equivalent to half of the maximum permissible levels, respectively. The growth of E. coli was more inhibited with one or both of the two preservatives by shaking culture than by non-shaking culture. For S. typhimurium the single treatment of the preservatives did not show inhibitory effect whereas the combined treatment of them showed bacteriostatic effect in shaking culture and a prolongation of lag phase in non-shaking culture. Addition of 2% sodium chloride to either potassium sorbate or potassium sorbate plus sodium benzoate remarkably increased the growth inhibition of E. coli for non-shaking cultivation but no effect observed for shaking cultivation. S. typhimurium was more sensitive to the addition of sodium chloride than E. coli in both shaking and non-shaking culture to show lower viable cell counts than initial numbers.

  • PDF

Effects of Vinegar and Lactic Acid on the Survival of Pathogens Causing Food Poisoning of Sliced Raw Fish Meat (식초와 젖산이 생선회 식중독 유래 병원성 세균의 생존에 미치는 영향)

  • 김영만;김경희
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.669-675
    • /
    • 2002
  • Introduction of sliced raw fish meat(SRFM) to fast food business has been considered seriously. However bacteria causing food poisoning should be controlled. Organic acids such as vinegar and lactic acid used in the sauce for SRFM were evaluated for their antibacterial activities. At low concentration levels of vinegar and lactic acid exerted strong antibacterial activities toward Vibriu sp.. In contrast, in case of Salmonella typhimurium and Escherichia coli O157:H7 low anitbacterial activities were observed even at relatively high concentrations. Minimum inhibitory concentrations(MIC) of vinegar for V. vulnificus, V. cholerae non-O1, V. parahaemolyticus, V. mimicus, S. typhimurium and E. coli O157:H7 were 16, 18, 16, 12, 26, and $20{\mu}\ell /m\ell, respertively. MIC of lactic acid for V. vilnificus, V. cholerae non-O1, V. parahaemolyticus, V. mimicus, S. typhimurium and E. coli O157:H7 were 20, 25, 25, 25, 40, and $35{\mu}\ell /m\ell, respectively. In case of vinegar bactericidal concentration upon 10 second contact for V. vulnificus, V. cholerae non-O1, V. parahaenolyticus, V. mimicus and E. coli O157:H7 were 8, 14, 10, 4, and 48%, respectively; however, even at 50% colony of S. typhimurium was observed. In case of lactic acid any colony was observed for V. vulnificus, V. cholerae non-O1, V. parahaemolyticus, V. mimicus, S. typhimurium and E. coli O157:H7 at the concentration of 2, 3, 4, 3, 14, and 17%, respectively. Vinegar and lactic acid of low concentration inhibited the growth of Vibrio sp., food poisoning pathogen in SRFM; in contrast, at high concentration these organic acids inhibited Salmonella sp. and Escherichia sp., food poisoning pathogen in other than SRFM.

Antimicrobial effect of Kimchi ingredients of methanol extract on pathogenic microorganisms (김치 재료 methanol 추출물이 식품유해 미생물에 미치는 항균효과)

  • Shin Sun-Mi;Park Ju-Yeon;Hahn Young-Sook
    • Korean journal of food and cookery science
    • /
    • v.21 no.1 s.85
    • /
    • pp.53-63
    • /
    • 2005
  • This study was carried out to determine the inhibitory effect of methanol extract from kimchi ingredients against Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Esherichia coli which are pathogenic microorganisms and Aspergillus sp. Penicillium sp. Antimicrobial activity of methanol extracts was tested against bacteria by paper disc method. Antifungal activity of methanol extracts was shown by hyphal growth inhibition ratio. The methanol extracts from all materials were effective against E. coli among them. And the antimicrobial activity of the methanol extracts from ginger and onion were lower than the others. The antifungal activity of the methanol extracts from radish, ginger, and garlic were effective against Aspergillus sp. and Penicillium sp. In the result of identifying antimicrobial effect rate, the methanol extracts from red pepper and radish had more than $40\%$ against S. typhimurium and more than $30\%$ against E. coli. Also the methanol extracts from onion had an high inhibitory effect rate of more than $50\%$ against S. typhimurium and that from garlic had more than $60\%$ against S. aureus. The minimum inhibitory concentration(MIC) of red pepper was examined 500 $\mu$g/mL against L. monocytogenes. This value was the lowest among the others.

Growth Inhibitory Effects of Chloride Salts and Organic Acid Salts Against Food-Borne Microorganisms (Chloride염 및 유기산 칼슘염의 식중독 미생물에 대한 증식 억제 효과)

  • 이나영;김용석;신동화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1233-1238
    • /
    • 2003
  • The growth inhibitory effects of chloride salts and organic acid salts against six food-borne microorganisms (Bacillus cereus ATCC 11778, Escherichia coli O157:H7 ATCC 43894, Listeria monocytogenes ATCC 19111, Salmonella Typhimurium ATCC 14028, Staphylococcus aureus ATCC 25923, Vibrio parahaemolyticus ATCC 17802) were determined using Bioscreen C in broth medium. The growth inhibitory concentrations of sodium chloride and potassium chloride on B. cereus were 7 and 9%, respectively. E. coli O157:H7 and S. aureus were inhibited by treatment of 3% calcium chloride. Magnesium chloride showed growth inhibitory effect on B. cereus, S. Typhimurium, and S. aureus at 5%. The order of growth inhibition effects by organic acid salts was calcium propionate>calcium acetate>calcium lactate. Calcium chloride (3%) with 0.01% lactic acid showed strong inhibition on the growth of S. Typhimurium and exhibited stronger growth inhibition than calcium chloride alone (5%). We concluded that calcium chloride and calcium propionate had strong growth inhibitory activities and that calcium chloride and sodium chloride in combination with lactic acid had stronger inhibitory activities than that of chloride salts alone.

Phage typing and pulsed-field gel electrophoresis of Salmonella typhimurium and S enteritidis isolated from domestic animals in Gyeongbuk province (경북지역 가축에서 분리된 Salmonella typhimurium과 S enteritidis의 phage typing 및 pulsed-field gel electrophoresis)

  • Kim, Sang-Yun;Lee, Hee-Moo;Kim, Sin;Hong, Hyon-Pyo;Kwon, Heon-Il
    • Korean Journal of Veterinary Service
    • /
    • v.24 no.3
    • /
    • pp.243-253
    • /
    • 2001
  • Forty-five Salmonella typhimurium isolates were encountered 8 phage types in which DT197 and U302 were the predominant types. The DT104 type which was first found from pig in Korea, and was resistant to chloramphenicol, streptomycin, sulfamethoxazole/trimethoprim, tetracycline, gentamicin and nalidixic acid. Twenty-two S enteritidis isolates were encountered 5 phage types in which PT4 were the representative (predominant). S enteritidis isolates were susceptible to all antimicrobial agents. As a result of PFGE analysis for S typhimurium and S enteritidis, PFGE patterns was better than phage typing in discriminating of strains. PFGE patterns were not in accord with phage type even though some strain had the same phage types.

  • PDF

Antimicrobial Activity of Natural Product Made by Opuntia ficus-indica var. saboten Against Salmonella spp. and Escherichia coli O157:H7 (백련초 (Opuntia ficus-indica var., saboten)의 Salmonella와 Escherichia coli O157 : H7에 대한 항균효과)

  • Kim, So-Hyun;Kwon, Nam-Hoon;Kim, J.Y.;Lim, J.Y.;Bae, W.K.;Kim, J.M.;Noh, K.M.;Hur, J.;Jung, W.K.;Park, K.T.;Lee, J.E.;Ra, J.C.;Park, Yong-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.2
    • /
    • pp.71-78
    • /
    • 2002
  • With the incidence of antibiotic resistant bacteria there is increasing interest in natural products such as herb extract and probiotics to control antibiotic resistant bacteria. This study was focused on the determination of antimicrobial activity of Opuntia ficus-indica var. saboten against Salmonella enetrica serovar Enteritidis (S. enterifidis), S. enterica serovar Typhimurium (S. Typhimurium) DT 104 and Escherichia coli 0157:H7. Though bactericidal effect of 0. ficus-indica var. saboten was not observed, it had significant inhibitory activity against Salmonella spp. and E. coli O157:H7 on the Moulter Hinton agar containing its solution dissolved in deionized water. To investigate the antimicrobial activity in vivo, mice were challenged with 5. Typhimurium DT104 (3.7$\times$108 cfu/mouse) after pre-feeding 0. ficus-indica var. saboten solution. The fecal shedding of S. Typhimurium DT104 was more dramatically decreased and not detectable in feces and intestines 3 days after challenge in mice fed with 0. ficus-indica var. saboten. Antibody responses of the intestinal IgA were also significantly increased in mice fed with 0. ficus-indica var. saboten. These findings suggest that Opuntia ficus-indica var. saboten decreased the shedding of S. Typhimurium DT104 in vitro and also in the gastrointestinal tract in mice. In addition, administration of the product might enhance the mucosal immune response against S. Typhimurium DT 104. In conclusion, Opuntia ficus-indica var. saboten might be useful to control antibiotic resistant bacteria in vivo and in vitro.

A Study on Growth Inhibition of Escherichia coli and Salmonella typhimurium by Lactic Acid Bacteria (유산균에 의한 Escherichia coli와 Salmonella typhimurium의 생육억제에 관한 연구)

  • Kim, E.A.;Baick, S.C.;Chung, W.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.491-498
    • /
    • 2002
  • The inhibitory effect of lactobacilli and bifidobacteria on the growth of typical intestinal pathogens, Escherichia coli and Salmonella typhimurium was studied. The degree of inhibition was measured by well disc assay and turbidimetry method. The strains which showed the higher antimicrobial activity were L. acidophilus La-5, L. acidophilus NCFM, L. casei Lc-01 on the average by using two different methods. The associative cultures were performed with selected 3 lactobacilli and 2 enteropathogens E. coli and S. typhimurium, respectively. Inhibition of pathogen began at 9hr after culturing so that viable counts was decreased rapidly. After 30hr incubation, there were no viable pathogens from the mixed culture. Under this experimental condition, the antimicrobial activity of lactic acid bacteria was not due to pH alone and supposed to different to the strains.

Synergistic Effect of Bacteriophage and Antibiotic against Antibiotic-Resistant Salmonella Typhimurium

  • Petsong, Kantiya;Vongkamjan, Kitiya;Ahn, Juhee
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.2
    • /
    • pp.189-194
    • /
    • 2020
  • In this study, we investigated the efficacy of Salmonella phage P22 combined with antibiotics to inhibit antibiotic-resistant S. Typhimurium CCARM 8009. The synergistic effect of phage P22 and antibiotics was evaluated by using disk diffusion and broth dilution assays. The development of Antimicrobial resistance was determined after time-kill assay. The antibiotic susceptibility assay showed the inhibition zone sizes around the antibiotic disks were increased up to 78.8% in the presence of phage (cefotaxime; 13.6%, chloramphenicol; 19.3%, ciprofloxacin; 12.7% and erythromycin; 78.8%). The minimum inhibitory concentration values of the combination treatment significantly decreased from 256 to 64 mg/mL for tetracycline, 8 to 4 mg/mL for chloramphenicol, 0.0156 to 0.0078 mg/mL for ciprofloxacin, 128 to 64 mg/mL for erythromycin and 512 to 256 mg/mL for streptomycin. The number of S. Typhimurium CCARM 8009 was approximately 4-log lower than that of the control throughout the combination treatment with phage P22 and ciprofloxacin delete at 37℃ for 20 h. The results indicate that the development of antimicrobial resistance in S. Typhimurium could be reduced in the presence of phage treatment. This study provides promising evidence for the phage-antibiotic combination as an effective treatment to control antibiotic-resistant bacteria.