DOI QR코드

DOI QR Code

Salmonella Promotes ASC Oligomerization-dependent Caspase-1 Activation

  • Hwang, Inhwa (Department of Microbiology and Immunology, Yonsei University College of Medicine) ;
  • Park, Sangjun (Department of Microbiology and Immunology, Yonsei University College of Medicine) ;
  • Hong, Sujeong (Department of Microbiology and Immunology, Yonsei University College of Medicine) ;
  • Kim, Eun-Hee (Department of Microbiology and Immunology, Yonsei University College of Medicine) ;
  • Yu, Je-Wook (Department of Microbiology and Immunology, Yonsei University College of Medicine)
  • Received : 2012.11.08
  • Accepted : 2012.11.22
  • Published : 2012.12.31

Abstract

Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-$1{\beta}$) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.

Keywords

References

  1. Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature 481: 278-286. https://doi.org/10.1038/nature10759
  2. Hong, S., S. Park, and J. W. Yu. 2011. Pyrin domain (PYD)- containing inflammasome in innate immunity. J. Bacteriol. Virol. 41: 133-146. https://doi.org/10.4167/jbv.2011.41.3.133
  3. Fernandes-Alnemri, T., J. Wu, J. W. Yu, P. Datta, B. Miller, W. Jankowski, S. Rosenberg, J. Zhang, and E. S. Alnemri. 2007. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14: 1590-1604. https://doi.org/10.1038/sj.cdd.4402194
  4. Fernandes-Alnemri, T., J. W. Yu, P. Datta, J. Wu, and E. S. Alnemri. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458: 509-513. https://doi.org/10.1038/nature07710
  5. Elinav, E., T. Strowig, J. Henao-Mejia, and R. A. Flavell. 2011. Regulation of the antimicrobial response by NLR proteins. Immunity 34: 665-679. https://doi.org/10.1016/j.immuni.2011.05.007
  6. Franchi, L., R. Muñoz-Planillo, and G. Núñez. 2012. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13: 325-332. https://doi.org/10.1038/ni.2231
  7. Miao, E. A., C. M. Alpuche-Aranda, M. Dors, A. E. Clark, M. W. Bader, S. I. Miller, and A. Aderem. 2006. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat. Immunol. 7: 569-575. https://doi.org/10.1038/ni1344
  8. Franchi, L., A. Amer, M. Body-Malapel, T. D. Kanneganti, N. Ozören, R. Jagirdar, N. Inohara, P. Vandenabeele, J. Bertin, A. Coyle, E. P. Grant, and G. Núñez. 2006. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat. Immunol. 7: 576-582. https://doi.org/10.1038/ni1346
  9. Miao, E. A., D. P. Mao, N. Yudkovsky, R. Bonneau, C. G. Lorang, S. E. Warren, I. A. Leaf, and A. Aderem. 2010. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. U.S.A. 107:3076-3080. https://doi.org/10.1073/pnas.0913087107
  10. Kofoed, E. M. and R. E. Vance. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477: 592-595. https://doi.org/10.1038/nature10394
  11. Zhao, Y., J. Yang, J. Shi, Y. N. Gong, Q. Lu, H. Xu, L. Liu, and F. Shao. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477: 596-600. https://doi.org/10.1038/nature10510
  12. Fernandes-Alnemri, T., J. W. Yu, C. Juliana, L. Solorzano, S. Kang, J. Wu, P. Datta, M. McCormick, L. Huang, E. McDermott, L. Eisenlohr, C. P. Landel, and E. S. Alnemri. 2010. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11: 385-393.
  13. Poyet, J. L., S. M. Srinivasula, M. Tnani, M. Razmara, T. Fernandes-Alnemri, and E. S. Alnemri. 2001. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276: 28309-28313. https://doi.org/10.1074/jbc.C100250200
  14. Mariathasan, S., K. Newton, D. M. Monack, D. Vucic, D. M. French, W. P. Lee, M. Roose-Girma, S. Erickson, and V. M. Dixit. 2004. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430: 213-218. https://doi.org/10.1038/nature02664
  15. Mariathasan, S., D. S. Weiss, K. Newton, J. McBride, K. O'Rourke, M. Roose-Girma, W. P. Lee, Y. Weinrauch, D. M. Monack, and V. M. Dixit. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228-232 https://doi.org/10.1038/nature04515
  16. Broz. P., J. von Moltke, J. W. Jones, R. E. Vance, and D. M. Monack. 2010. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8: 471-483. https://doi.org/10.1016/j.chom.2010.11.007
  17. Hornung, V., F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono, K. L. Rock, K. A. Fitzgerald, and E. Latz. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9: 847-856. https://doi.org/10.1038/ni.1631
  18. Yu, J. W., T. Fernandes-Alnemri, P. Datta, J. Wu, C. Juliana, L. Solorzano, M. McCormick, Z. Zhang, and E. S. Alnemri. 2007. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol. Cell 28: 214-227. https://doi.org/10.1016/j.molcel.2007.08.029
  19. Pétrilli, V., S. Papin, C. Dostert, A. Mayor, F. Martinon, and J. Tschopp. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14: 1583-1589. https://doi.org/10.1038/sj.cdd.4402195
  20. Eisenbarth, S. C., O. R. Colegio, W. O'Connor, F. S. Sutterwala, and R. A. Flavell. 2008. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453: 1122-1126. https://doi.org/10.1038/nature06939
  21. Broz, P., K. Newton, M. Lamkanfi, S. Mariathasan, V. M. Dixit, and D. M. Monack. 2010. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207: 1745-1755. https://doi.org/10.1084/jem.20100257
  22. Franchi, L., T. D. Kanneganti, G. R. Dubyak, and G. Núñez. 2007. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J. Biol. Chem. 282: 18810-18818. https://doi.org/10.1074/jbc.M610762200
  23. Arlehamn, C. S., V. Pétrilli, O. Gross, J. Tschopp, and T. J. Evans. 2010. The role of potassium in inflammasome activation by bacteria. J. Biol. Chem. 285: 10508-10518. https://doi.org/10.1074/jbc.M109.067298

Cited by

  1. Non‐transcriptional regulation of NLRP3 inflammasome signaling by IL‐4 vol.93, pp.6, 2012, https://doi.org/10.1038/icb.2014.125
  2. Bacterial Control of Pores Induced by the Type III Secretion System: Mind the Gap vol.7, pp.None, 2012, https://doi.org/10.3389/fimmu.2016.00084
  3. Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner vol.8, pp.None, 2012, https://doi.org/10.3389/fimmu.2017.00333
  4. Alum Activates the Bovine NLRP3 Inflammasome vol.8, pp.None, 2012, https://doi.org/10.3389/fimmu.2017.01494
  5. Proteomics-based functional studies reveal that galectin-3 plays a protective role in the pathogenesis of intestinal Behçet’s disease vol.9, pp.1, 2012, https://doi.org/10.1038/s41598-019-48291-1
  6. Comprehensive review of ASC structure and function in immune homeostasis and disease vol.47, pp.4, 2012, https://doi.org/10.1007/s11033-020-05345-2