• Title/Summary/Keyword: S phase arrest

Search Result 160, Processing Time 0.031 seconds

Induction of Caspase-3 Dependent Apoptosis in Human Ovarian Cancer SK-OV-3 Cells by Genistein

  • Choi, Eun-Jeong;Kim, Tae-Hee;Kim, Gun-Hee;Chee, Kew-Mahn
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.216-218
    • /
    • 2008
  • The present study was designed to determine how the phytochemical genistein activates caspase-3 to cause cell cycle arrest and apoptosis. When human ovarian cancer SK-OV-3 cells were treated with $200\;{\mu}M$ genistein for 24 hr, cell growth decreased significantly (p<0.05). Conversely, genistein treatment significantly increased cytotoxicity (measured as lactate dehydrogenase release) under the same conditions (p<0.05). To elucidate the mechanism behind the induction of apoptosis by genistein, we studied the cell cycle and caspase-3 activation. When cells were treated with genistein, the population of cells in sub-G1 phase increased by 44.2% compared to untreated cells. Genistein caused decrease in precursor caspase-3, increase in cleaved caspase-3 and a significant increase in caspase-3 activity (p<0.05). Therefore, genistein may induce apoptosis via caspase-3 activation. However, high-dose genistein treatment must be viewed with caution because of its potential cytotoxicity.

Urushiol V Suppresses Cell Proliferation and Enhances Antitumor Activity of 5-FU in Human Colon Cancer Cells by Downregulating FoxM1

  • Jeong, Ji Hye;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.257-264
    • /
    • 2022
  • Colorectal cancer (CRC) is one of the most common malignant tumor. 5-FU is commonly used for the treatment of CRC. However, the development of drug resistance in tumor chemotherapy can seriously reduce therapeutic efficacy of 5-FU. Recent data show that FoxM1 is associated with 5-FU resistance in CRC. FoxM1 plays a critical role in the carcinogenesis and drug resistance of several malignancies. It has been reported that urushiol V isolated from the cortex of Rhus verniciflua Stokes is cytotoxic to several types of cancer cells. However, the underlying molecular mechanisms for its antitumor activity and its potential to attenuate the chemotherapeutic resistance in CRC cells remain unknown. Here, we found that urushiol V could inhibit the cell proliferation and induced S-phase arrest of SW480 colon cancer cells. It inhibited protein expression level of FoxM1 through activation of AMPK. We also investigated the combined effect of urushiol V and 5-FU. The combination treatment reduced FoxM1 expression and consequently reduced cell growth and colony formation in 5-FU resistant colon cancer cells (SW480/5-FUR). Taken together, these result suggest that urushiol V from Rhus verniciflua Stokes can suppress cell proliferation by inhibiting FoxM1 and enhance the antitumor capacity of 5-FU. Therefore, urushiol V may be a potential bioactive compound for CRC therapy.

Effect of Retinoids on Human Breast Cancer Cells (인체 유방암 세포에서 retinoids의 영향에 대한 연구)

  • 윤현정;신윤용;공구
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.51-66
    • /
    • 2004
  • Retinoids, better known as vitamin A, have been reported to inhibit the growth of several breast cancer cell lines in culture and to reduce breast tumor growth in animal models. Furthermore, retinoids can augment the action of other breast cancer cell growth inhibitors both in vitro and in vivo. Clinically, interest has increased in the potential use of retinoids for the prevention and treatment of human breast cancer. We have examine the effect of all-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) on human breast cancer cell(MCF-10A, T47-D, MCF-7) proliferation using MTT assay and cell cycle analysis(FACS). Overexpression of cyclin D1 protein is observed in the majority of breast cancers, suggesting that dysregulated expression of cyclin D1 might be a critical event in breast cancer carcinogenesis. We investigated whether tRA and 9-cis RA might affect expression of cyclin D1 on human breast cancer cells(MCF-10A, T47-D, MCF-7) using RT-PCR and west-ern bolt. In MCF-10A cells, either tRA or 9-cis RA treatment did not affect the cell proliferation. In T47-D cells and MCF-7 cells, either tRA or 9-cis RA treatment showed the inhibition of the cell proliferation over control cells and also inhibit the estrogen stimulated cell proliferation when it was given together with estrogen. The effect of retinoids was dose- and time- dependent. T47-D cells treated with 1.0 $\muM$ tRA undergo G0/G1-phase arrest by Day 5. MCF-7 cells treated with 1.0 $\muM$ tRA undergo S-phase arrest by Day 5. All-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) inhibited the cyelin D1 mRNA and protein expression levels of human MCF-7 and T47-D breast carcinoma cells in vitro. The data indicate that retinoids can reduce cyclin D1 expression levels in a variety of breast cell lines in vitro and result in inhibition of cell proliferation. tRA-mediated growth inhibition and cyclin D1 expression inhibition is more potent than 9-cis RA mediated that. tRA-mediated inhibition effect is more potent on T47-D cells than on MCF-7 cells. Our data suggest that retinoids activity is different according to property of cell lines. Future chemoprevention of breast cancer studies using retinoids will be necessary to determine the mechanism of the retinoids-mediated growth inhibition.

  • PDF

Molecular Mechanism of the Antiproliferative Effect by Ginseng Panaxynol on a Human Malignant Melanoma Cell Line, SK-MEL-1 (인체 흑색종 세포주 SK-MEL-1에 대한 인삼 panaxynol의 항증식 효과 기전)

  • Cho Hongkeun;Yu Su-Jin;Roh Joo Young;;Hwang Woo-Ik;Sohn Jeongwon
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.190-197
    • /
    • 1999
  • In this study, the molecular mechanism of the growth inhibitory effect of panaxynol was investigated in a human malignant melanoma cell line, SK-MEL-l. In the cell cycle analysis, panaxynol arrested cell cycle progression of SK-MEL-I at the G1 phase. Immunoblot analysis demonstrated that panaxynol increased $p21^{WAF1}$ and decreased cdc2 expression. Protein levels of pl6, p27, E2F-1, Rb, and p53 were not changed. Thus, the changes in expression levels of $p21^{WAF1}$ and cdc2 apparently mediate the cell cycle arrest caused by panaxynol. In addition, cycloheximide (CHX) partially reversed the growth inhibition by panaxynol, which suggested that new protein synthesis was required. On the other hand, LLnL, a proteasome inhibitor, increased antiproliferative effect of panaxynol. This may be due to stabilization of the protein(s) responsible for the growth inhibition such as $p21^{WAF1}$. In summary, these results demonstrate that panaxynol inhibits proliferation of SK-MEL-I by inducing cell cycle arrest at the G1 phase and the inhibitory effect is mediated by the increased level of $p21^{WAF1}$ as well as decreased cdc2 expression.

  • PDF

The Red-ginseng Extract Alters the Cell Cycle and Viability in the Human Neuronal Stem Cells (홍삼추출액의 인간성체신경줄기세포 증식과 세포사 관련 세포주기의 변화에 대한 효과)

  • Kim, Hyun-Jung;Kang, La-Mi;Ahn, Jin-Young;Han, Jung-Soon;Kim, Seung-U.;Lee, Kwang-Woo;Kim, Man-Ho
    • Journal of Ginseng Research
    • /
    • v.28 no.1
    • /
    • pp.39-44
    • /
    • 2004
  • The present study is to determine whether the Red-ginseng extract has a proliferative or cytotoxic effect on the human neuronal stem cells(hNSCs). The hNSCs were grown and incubated with different doses of Red-ginseng extract. We tested the proliferative or cytotoxic effects by MTT and FACS analysis. Cell viability cell cycle analysis, DNA fragmentation, and bax or PARP expressions were evaluated. The hNSCs showed a proliferafe trend with its peak concentration at 0.3 $\mu\textrm{g}$/$m\ell$. Beyond this point, higher doses decreased viabilities and showed a cytotoxic effect at 10 $\mu\textrm{g}$/$m\ell$. There was a tendency of increased S and G2/M phases during cell proliferation. In a cytotoxic condition, decreased S phase and increased G0/G1 phases were noted, suggesting cell cycle arrest. The cytotoxic effect was associated with increase DNA fragmentation in a dose-dependent manner, However PARP cleavage or bax expression was not detected. Our results suggest that Red-ginseng extract has dual effects, the cell proliferative or cytotoxic effect, on hNSCs in vitro with dose-dependent manner.

Expression of HBP2 in Human Spermatogonial Stem Cell-like Cells from Nonobstructive Azoospermia Patients and Its Role in G1/S Transition & Downregulation in Colon Cancer

  • Yoo, Jung-Ki;Lee, Dong-Ryul;Lim, Jung-Jin;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.211-215
    • /
    • 2008
  • The HMG box containing protein (HBP) has a high mobility group domain and involved in the regulation of proliferation and differentiation of tissues. We screened HBP2 in glioblastoma using Suppression Subtractive Hybridization (SSH) and isolated human spermatogonial stem cell-like cells (hSSC-like cells) derived from patients of nonobstructive azoospermia (NOA). Expression of HBP2 was analyzed by RT-PCR in undifferentiated stem cells (human Embryonic Stem Cells, hSSC-like cells 2P) and spontaneous differentiated stem cells (hSSC-like cells 4P). It was overexpressed in hESC and hSSC-like cells 2P but not in hSSC-like cells 4P. Also, the expression level of HBP2 was downregulated in colon tumor tissues compared to normal tissues. Specifically in synchronized WI-38 cells, HBP2 was highly upregulated until the G1 phase of the cell cycle and gradually decreased during the S phase. Our results suggest that HBP2 was downregulated during the spontaneous differentiation of hSSC-like cells. HBP2 was differently expressed in colon tissues and was related to G1-progression in WI-38 cells. It may playa role in the maintenance of an undifferentiated hSSC-like cell state and transits from G1 to S in WI-38 cells. This research was important that it identified a biomarker for an undifferentiated state of hSSC-like cells and characterized its involvement to arrest during cell cycle in colon cancer.

Constitutive Activation of $p70^{S6k}$ in Cancer Cells

  • Kwon, Hyoung-Keun;Bae, Gyu-Un;Yoon, Jong-Woo;Kim, Yong-Kee;Lee, Hoi-Young;Lee, Hyang-Woo;Han, Jeung-Whan
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.685-690
    • /
    • 2002
  • The mitogen-stimulated serine/threonine kinase $p70^{S6k}$ plays an important role in the progression of cells from $G_0/G$_1$$ to S phase of the cell cycle by translational up-regulation of a family of mRNA transcripts family of mRNA transcripts which contain polypyrimidine tract at their 5 transcriptional start site. Here, we report that $p70^{S6k}$ was constitutively phosphorylated and activated to various degrees in serum-deprived AGS, A2058, HT-1376, MG63, MCF7, MDA-MB-435S, MDA-MB-231 and MB-157. Rapamycin treatment induced a significant dephosphorylation and inactivation of $p70^{S6k}$ in all cancer cell lines, while wortmannin, a specific inhibitor of PI3-K, caused a mild dephosphorylation of $p70^{S6k}$ in AGS, MDA-MB-435S and MB-157. In addition, SQ20006, methylxanthine phosphodiesterase inhibitor, reduced the phosphorylation of $p70^{S6k}$ in all cancer cells tested. Consistent with inhibitory effect of rapamycin on $p70^{S6k}$ activity, rapamycin inhibited [$^3H$]-thymidine incorporation and increased the number of cells at $G_{0}G_{1}$ phase. Furthermore, these inhibitory effects were accompanied by the decrease in growth of cancer cells. Taken together, the results indicate that the antiproliferative activity of rapamycin might be attributed to cell cycle arrest at $G_{0}G_{1}$ phase in human cancer cells through the inhibition of constitutively activated $p70^{S6k}$ of cancer cells and suggest $p70^{S6k}$ as a potential target for therapeutic strategies aimed at preventing or inhibiting tumor growth.

Induction of Cdk inhibitor p21 and inhibition of cyclooxygenase-2 by resveratrol in human lung carcinoma A549 cells. (Resveratrol에 의한 A549 인체 폐암세포의 증식억제 및 apoptosis 유발에 관한 연구)

  • 김영애;임선영;이숙희;박건영;이원호;최영현
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.800-808
    • /
    • 2004
  • Resveratrol, a phytoalexin found at high levels in grapes and in grape products such as red wine, has been reported to possess a wide range of biological and pharmacological activities including antioxident, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects. According to recent studies, this compound is an effective inhibitor of cell growth in general, triggers partial arrest of the cell cycle and induce apoptosis. In this study, the anti-proliferative effects of resveratrol in A549 human lung carcinoma cells were investigated. It is shown that resveratrol induced the growth inhibition in a time-dependent manner and morphological changes of A549 cells, which were associated with induction of S phase arrest of the cell cycle and apoptotic cell death. The Bcl-$X_L$levels were markedly down-regulated in resveratrol treated cells, however, Bax and Bcl-2 were remained unchanged. Resveratrol treatment induced the proteolytic degradation of Sp-l and proliferating cell nuclear antigen protein, and inhibited the expression of $\beta$-catenin protein. Resveratrol treatment also induced a marked up-regulation of cyclin-dependent kinase (Cdk) inhibitor p21 and inhibited the kinase activities of Cdk2 and Cdk4. In addition, resveratrol treatment inhibited the levels of cyclooxygenase (COX)-2 mRNA and protein, and the release of prostagladin E2 without alteration of COX-1 expression. Taken together, these findings suggest that resveratrol may be a potential chemotherapeutic agent for the control of human lung carcinorma cells.

Anti-oxidant, Anti-inflammatory and Anti-cancer Effect of Methanol Extract of Pogostemon cablin (광곽향 메탄올 추출물의 항산화, 항염증 및 암세포 증식 억제 효과)

  • Yun, Seung Geun;Jin, Soojung;Jeong, Hyun Young;Yun, Hee Jung;Do, Mi young;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.44-52
    • /
    • 2015
  • In the present study, the substance that show anti-proliferation of cancer cells as well as anti-oxidant and anti-inflammatory effect was searched. As a results, the methanol extract of Pogostemon cablin (P. cablin), is a well-known herb for traditional medicine in Korea and China for treating the digestive disorders, less of appetite, vomiting and diarrhea, inhibited the growth of various cancer cells such as A549, HepG2, MCF7 and HT29 cells. Cytotoxic effect of methanol extraction of P. cablin was excellent in A549 cells. P. cablin extract induced cell cycle arrest at G1 phase of A549 in a dose dependent manner. And it induced phosphorylation of p38 and Cdc25A and reduced expression of Cdc25A, Cdks, Cyclins and phospho-Retinoblastoma (Rb) proteins. Therefore, P. cablin extract seems to act through the p38 - Cdc25A - Cdk - Cyclin - Rb pathway in A549 cells. In addition, P. cablin extract showed anti-oxidant effect by DPPH free radical scavenging assay and anti-inflammation effect by inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) in RAW 264.7 cells in a dose-dependent manner. Taken together, these results suggest that P. cablin may be used as not only candidate materials for anti-cancer, anti-inflammatory and anti-oxidant, moreover, it would be possible utilized in various health functional food materials.

Modulation of Cell Cycle Regulators by Sulforaphane in Human Mepatocarcinoma HepG2 Cells (HepG2 인체간암세포의 세포주기조절인자 발현에 미치는 sulforaphane의 영향)

  • Bae, Song-Ja;Kim, Gi-Young;Yoo, Young-Hyun;Choi, Byung-Tae;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1235-1242
    • /
    • 2006
  • Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human canter cells, however its molecular mechanisms are poorly understood. In tile present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human hepatocarcinoma HepG2 cells. Treatment of HepG2 cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by DNA flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells suggesting that sulforaphane induced apoptosis. This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of ryclin A, cyclin 31 and Cdc2 protein. However, the levels of tumor suppressor p53 and Cdk inhibitor p21 mRNA and protein expression were significantly increased by sulforaphane treatment in a concentration-dependent manner. Although further studies are needed, the present work suggests that sulforaphane may be a potential rhemoprevetiveichemotherapeucc agent for the treatment of human cancer cells.