• Title/Summary/Keyword: S aureus

Search Result 2,106, Processing Time 0.032 seconds

Mathematical Model for Predicting the Growth Probability of Staphylococcus aureus in Combinations of NaCl and NaNO2 under Aerobic or Evacuated Storage Conditions

  • Lee, Jeeyeon;Gwak, Eunji;Ha, Jimyeong;Kim, Sejeong;Lee, Soomin;Lee, Heeyoung;Oh, Mi-Hwa;Park, Beom-Young;Oh, Nam Su;Choi, Kyoung-Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.752-759
    • /
    • 2016
  • The objective of this study was to describe the growth patterns of Staphylococcus aureus in combinations of NaCl and $NaNO_2$, using a probabilistic model. A mixture of S. aureus strains (NCCP10826, ATCC13565, ATCC14458, ATCC23235, and ATCC27664) was inoculated into nutrient broth plus NaCl (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and $NaNO_2$ (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm). The samples were then incubated at 4, 7, 10, 12 and $15^{\circ}C$ for up to 60 d under aerobic or vacuum conditions. Growth responses [growth (1) or no growth (0)] were then determined every 24 h by turbidity, and analyzed to select significant parameters (p<0.05) by a stepwise selection method, resulting in a probabilistic model. The developed models were then validated with observed growth responses. S. aureus growth was observed only under aerobic storage at $10-15^{\circ}C$. At $10-15^{\circ}C$, NaCl and $NaNO_2$ did not inhibit S. aureus growth at less than 1.25% NaCl. Concentration dependency was observed for NaCl at more than 1.25%, but not for $NaNO_2$. The concordance percentage between observed and predicted growth data was approximately 93.86%. This result indicates that S. aureus growth can be inhibited in vacuum packaging and even aerobic storage below $10^{\circ}C$. Furthermore, $NaNO_2$ does not effectively inhibit S. aureus growth.

Antibacterial Activity of Water Extract of Green Tea against Pathogenic Bacteria (식중독세균에 대한 녹차 물추출물의 항균작용)

  • 박찬성
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.286-291
    • /
    • 1998
  • The sensitivity of various pathogenic bacteria(Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus 196E, Salmonella typhimurium) to the water extract of green tea was tested. Tryptic soy broth was inoculated with 10$\^$5/CPU/ml of pathogenic bacteria and incubated at 35$^{\circ}C$ for 30 hours. The extract was added at a final concentration of 0-2%(w/v) into culture broth at the mid or late exponential phase of bacteria. The growth of pathogenic bacteria was inhibited with increasing concentrations of the extract in culture broth and the late exponential phase cells were more resistant than the mid exponential phase cells. Cram positive bacteria(L. monocytogenes and S. aureus 196E) were more sensitive than Cram negative bacteria(E. coli O157:H7 and S. typhimurium). S. aureus had the highest sensitivity, followed by L monocytogenes, E. coli O157:H7. S. typhimurium was the most resistant to the water extract of green tea.

  • PDF

Draft genome sequence of lytic bacteriophage SA7 infecting Staphylococcus aureus isolates (Staphylococcus aureus 분리주를 감염시키는 용균 박테리오파지 SA7의 유전체 염기서열 초안)

  • Kim, Youngju;Lee, Gyu Min;Taizhanova, Assiya;Han, Beom Ku;Kim, Hyunil;Ahn, Jeong Keun;Kim, Donghyuk
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.77-78
    • /
    • 2018
  • Staphylococcus aureus is a Gram-positive and a round-shaped bacterium of Firmicutes phylum, and is a common cause of skin infections, respiratory infections, and food poisoning. Bacteriophages infecting S. aureus can be an effective treatment for S. aureus infections. Here, the draft genomic sequence is announced for a lytic bacteriophage SA7 infecting S. aureus isolates. The bacteriophage SA7 was isolated from a sewage water sample near a livestock farm in Chungcheongnam-do, South Korea. SA7 has a genome of 34,730 bp and 34.1% G + C content. The genome has 53 protein-coding genes, 23 of which have predicted functions from BLASTp analysis, leaving the others conserved proteins with unknown function.

Effect of KCl and NaCl on Uptake of Proline in Staphylococcus aureus

  • 배진현
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.5 no.1
    • /
    • pp.101-107
    • /
    • 1995
  • Staphylococcus aureus, the most salt-tolerant food-borne pathogen, produces enterotoxins which may cause symptoms such as vomiting, diarrhea, nausea, and cramps. Since this bacterium has been able to grow at extremely high osmolarity its identity in foods with low water activity values such as salted or dried foods is of great concern. In this study, the growth of S. aureus at high osmolarity has been studied and the doubling time of S. aureus grown at TSB medium containing 15% NaCl has been found to be increased to 4∼5 hours. The stimulation of proline uptake after exposure of cells to high concentration of both extracellular KCl and sucrose was not increased. Stimulation of proline uptake at these environment only occured when 25mM NaCl was present I transport buffer. In additional experiments, the time required to reach mid-logarithmic phase in defined medium of high osmolarity found to be reduce by the presence of glycine betaine, proline, and choline.

  • PDF

Biochemical Study of Recombinant PcrA from Staphylococcus aureus for the Development of Screening Assays

  • Dubaele, Sandy;Martin, Christophe;Bohn, Jacqueline;Chene, Patrick
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.7-14
    • /
    • 2007
  • Helicases are ubiquitous enzymes, which utilize the energy liberated during nucleotide triphosphate hydrolysis to separate double-stranded nucleic acids into single strands. These enzymes are very attractive targets for the development of new antibacterial compounds. The PcrA DNA helicase from Staphylococcus aureus is a good candidate for drug discovery. This enzyme is unique in the genome of S. aureus and essential for this bacterium. Furthermore, it has recently been published that it is possible to identify inhibitors of DNA helicases such as PcrA. In this report, we study the properties of recombinant PcrA from S. aureus purified from Escherichia coli to develop ATPase and helicase assays to screen for inhibitors.

The antibacterial effect of Endoseal TCS mixed with water-soluble mangostin derivatives of Garcinia mangostana L. ethanol extract against Enterococcus faecalis and Staphylococcus aureus

  • Park, Tae-Young;Lim, Yun Kyong;Kim, Jin-Hee;Lee, Dae Sung;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.45-50
    • /
    • 2021
  • This study evaluated the antimicrobial activity of Endoseal TCS, an mineral trioxide aggregate-based root canal sealer, mixed with water-soluble mangostin derivatives (WsMD) of Garcinia mangostana L. (mangosteen) ethanol extract against Enterococcus faecalis and Staphylococcus aureus. The antibacterial activity of Endoseal TCS mixed with WsMD against three strains of E. faecalis and three strains of S. aureus was performed using agar diffusion test. The data showed that Endoseal TCS mixed with 0.115% WsMD had a zone of inhibition of 0.7 ± 0.2-2.4 ± 0.1 mm. The results suggest that Endoseal TCS mixed with WsMD of Garcinia mangostana L. ethanol extract is useful as a root canal sealer with antibacterial activity against E. faecalis and S. aureus.

Comparative Genomic Analysis of Staphylococcus aureus FORC_001 and S. aureus MRSA252 Reveals the Characteristics of Antibiotic Resistance and Virulence Factors for Human Infection

  • Lim, Sooyeon;Lee, Dong-Hoon;Kwak, Woori;Shin, Hakdong;Ku, Hye-Jin;Lee, Jong-eun;Lee, Gun Eui;Kim, Heebal;Choi, Sang-Ho;Ryu, Sangryeol;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.98-108
    • /
    • 2015
  • Staphylococcus aureus is an important foodborne pathogen that causes diverse diseases ranging from minor infections to life-threatening conditions in humans and animals. To further understand its pathogenesis, the genome of the strain S. aureus FORC_001 was isolated from a contaminated food. Its genome consists of 2,886,017 bp double-stranded DNA with a GC content of 32.8%. It is predicted to contain 2,728 open reading frames, 57 tRNAs, and 6 rRNA operons, including 1 additional 5S rRNA gene. Comparative phylogenetic tree analysis of 40 complete S. aureus genome sequences using average nucleotide identity (ANI) revealed that strain FORC_001 belonged to Group I. The closest phylogenetic match was S. aureus MRSA252, according to a whole-genome ANI (99.87%), suggesting that they might share a common ancestor. Comparative genome analysis of FORC_001 and MRSA252 revealed two non-homologous regions: Regions I and II. The presence of various antibiotic resistance genes, including the SCCmec cluster in Region I of MRSA252, suggests that this strain might have acquired the SCCmec cluster to adapt to specific environments containing methicillin. Region II of both genomes contains prophage regions but their DNA sequence identity is very low, suggesting that the prophages might differ. This is the first report of the complete genome sequence of S. aureus isolated from a real foodborne outbreak in South Korea. This report would be helpful to extend our understanding about the genome, general characteristics, and virulence factors of S. aureus for further studies of pathogenesis, rapid detection, and epidemiological investigation in foodborne outbreak.

Predictive Model for Growth of Staphylococcus aureus in Suyuk (수육에서의 Staphylococcus aureus 성장 예측모델)

  • Park, Hyoung-Su;Bahk, Gyung-Jin;Park, Ki-Hwan;Pak, Ji-Yeon;Ryu, Kyung
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.487-494
    • /
    • 2010
  • Cooked pork can be easily contaminated with Staphylococcus aureus during carriage and serving after cooking. This study was performed to develop growth prediction models of S. aureus to assure the safety of cooked pork. The Baranyi and Gompertz primary predictive models were compared. These growth models for S. aureus in cooked pork were developed at storage temperatures of 5, 15, and $25^{\circ}C$. The specific growth rate (SGR) and lag time (LT) values were calculated. The Baranyi model, which displayed a $R^2$ of 0.98 and root mean square error (RMSE) of 0.27, was more compatible than the Gompertz model, which displayed 0.84 in both $R^2$ and RMSE. The Baranyi model was used to develop a response surface secondary model to indicate changes of LT and SGR values according to storage temperature. The compatibility of the developed model was confirmed by calculating $R^2$, $B_f$, $A_f$, and RMSE values as statistic parameters. At 5, 15 and $25^{\circ}C$, $R^2$ was 0.88, 0.99 and 0.99; RMSE was 0.11, 0.24 and 0.10; $B_f$ was 1.12, 1.02 and 1.03; and $A_f$ was 1.17, 1.03 and 1.03, respectively. The developed predictive growth model is suitable to predict the growth of S. aureus in cooked pork, and so has potential in the microbial risk assessment as an input value or model.

Isorhamnetin Attenuates Staphylococcus aureus-Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression

  • Jiang, Lanxiang;Li, Hongen;Wang, Laiying;Song, Zexin;Shi, Lei;Li, Wenhua;Deng, Xuming;Wang, Jianfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.596-602
    • /
    • 2016
  • Staphylococcus aureus, like other gram-positive pathogens, has evolved a large repertoire of virulence factors as a powerful weapon to subvert the host immune system, among which alpha-hemolysin (Hla), a secreted pore-forming cytotoxin, plays a preeminent role. We observed a concentration-dependent reduction in Hla production by S. aureus in the presence of sub-inhibitory concentrations of isorhamnetin, a flavonoid from the fruits of Hippophae rhamnoides L., which has little antibacterial activity. We further evaluate the effect of isorhamnetin on the transcription of the Hla-encoding gene hla and RNAIII, an effector molecule in the agr system. Isorhamnetin significantly down-regulated RNAIII expression and subsequently inhibited hla transcription. In a co-culture of S. aureus and lung cells, topical isorhamnetin treatment protected against S. aureus-induced cell injury. Isorhamnetin may represent a leading compound for the development of anti-virulence drugs against S. aureus infections.

Molecular Characterization of Regulatory Genes Associated with Biofilm Variation in a Staphylococcus aureus Strain

  • Kim, Jong-Hyun;Kim, Cheorl-Ho;Hacker, Jorg;Ziebuhr, Wilma;Lee, Bok-Kwon;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • Biofilm formation in association with the intercellular adhesion (icaADBC) gene cluster is a serious problem in nosocomial infections of Staphylococcus aureus. In all 112 S. aureus strains tested, the ica genes were present, and none of these strains formed biofilms. The biofilm formation is known to be changeable by environmental factors. We have found about 30% of phase variation in these strains with treatment of tetracycline, pristinamycin, and natrium chloride. However, this phenotype disappeared without these substances. Therefore, we have constructed stable biofilm-producing variants through a passage culture method. To explain the mechanism of this variation, nucleotide changes of ica genes were tested in strain S. aureus 483 and the biofilm-producing variants. No differences of DNA sequence in ica genes were found between the strains. Additionally, molecular analysis of three regulatory genes, the accessory gene regulator (agr) and the staphylococcal accessory regulator (sarA), and in addition, alternative transcription factor ${\sigma}^B$ (sigB), was performed. The data of Northern blot and complementation showed that SigB plays an important role for this biofilm variation in S. aureus 483 and the biofilm-producing variants. Sequence analysis of the sigB operon indicated three point mutations in the rsbU gene, especially in the stop codon, and two point mutations in the rsbW gene. This study shows that this variation of biofilm formation in S. aureus is deduced by the role of sigB, not agr and sarA.