• Title/Summary/Keyword: S/R machine

Search Result 417, Processing Time 0.049 seconds

A genetic algorithm for determining the optimal operating policies in an integrated-automated manufacturing system (통합자동생산시스템에서 최적운영방안 결정을 위한 유전자 알고리즘의 개발)

  • 임준묵
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.05a
    • /
    • pp.145-153
    • /
    • 1999
  • We consider a Direct Input Output Manufacturing System(DIOMS) which has a munber of machine centers placed along a built-in Automated Storage/Retrieval System(AS/RS). The Storage/Retrieval (S/R) machine handles parts placed on pallets for the machine centers located at either one or both sides of the As/Rs. This report studies the operational aspect of DIOMS and determines the optimal operating policy by combining computer simulation and genetic algorithm. The operational problem includes: input sequencing control, dispatching rule of the S/R machine, machine center-based part type selection rule, and storage assignment policy. For each operating policy, several different policies are considered based on the known research results. In this report, using the computer simulation and genetic algorithm we suggest a method which gives the optimal configuration of operating policies within reasonable computation time.

  • PDF

Travel Time Models of a Hybrid Automated Storage/Retrieval Module for Small and Medium-Sized Enterprises (중소기업용 혼합형 자동창고에 대한 주행시간 모형)

  • Lee, Moon-Kyu
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.52-61
    • /
    • 2004
  • During the past decades automated storage/retrieval (AS/R) systems have been dominantly implemented in most industrial fields due to their handling efficiency and high utilization of storage space. Such AS/R systems consist of several modules each of which contains two racks and a S/R machine. This paper proposes a design of the hybrid AS/R module which can be adopted without too much initial expenditure by most of small-and-medium sized companies. The hybrid module consists of an AS/R module on the upper floor and a traditional warehouse module on the lower floor. For the AS/R module, analytical expressions of the expected travel times for the S/R machine and the elevator per operation are derived. The expected travel times represent the performance of the module and thus can be used for its economic design.

A Solution Procedure for Designing Automated Storage/Retrieval Systems (자동창고 설계를 위한 최적화 모델 및 해법에 관한 연구)

  • 나윤균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.9-14
    • /
    • 1995
  • A cost minimization model for designing AS/RS (Automated Storage/Retrieval Systtems) has been developed under the S/R (Storage/Retrieval) machine throughput rate and total storage capacity requirements. The objective function includes S/R machine cost storage rack cost, and interface conveyor cost. Since the model is a nonlinear integer programming problem which is very hard to solve with large problem size, the model is simplified using previous research results to be solved exactly and a simultion procedure is combined to verify that throughput rate requirements are satisfied.

  • PDF

Storage Capacity Estimation for Automated Storage/Retrieval Systems under Stochastic Demand (확률적 수요하에서의 자동창고의 필요 저장능력 추정)

  • Cho, Myeon-Sig;Bozer, Yavuz-A.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.2
    • /
    • pp.169-175
    • /
    • 2001
  • Most of studies on automated storage/retrieval (AS/R) system assumed that storage capacity is given, although it is a very important decision variable in the design phase. We propose a simple algorithm to estimate the required storage capacity, i.e., number of aisles and number of openings in vertical and horizontal directions in each aisle, of an AS/R system under stochastic demand, in which storage requests occur endogenously and exogenously while the retrieval requests occur endogenously from the machines. Two design criteria, maximum permissible overflow probability and maximum allowable storage/retrieval (S/R) machine utilization, are used to compute the storage capacity. This model can be effectively used in the design phase of new AS/R systems.

  • PDF

Storage Capacity Estimation for Automated Storage/Retrieval Systems Considering Material Handling Delay (자재취급 지연을 고려한 자동창고의 저장능력 추정)

  • 조면식
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.71-82
    • /
    • 2001
  • Considering material handling delay which occurs between storage and processing stations, we propose an algorithm to estimate the required storage capacity, i.e., number of aisles and number of openings in vertical and horizontal directions in each aisle, of an automated storage/retrieval(AS/R) system. Due to the random nature of storage and retrieval requests, proportion of single and dual commands is not known in advance. Two design criteria, maximum permissible overflow probability and maximum allowable storage/retrieval(S/R) machine utilization, are used to compute the storage capacity. Most of studies assume that storage capacity of AS/R systems is given, although it is a very important decision variable in the design phase. Therefore, the proposed model can be effectively used in the design phase of new AS/R systems.

  • PDF

A Study of the development of a visualization MMI for Power System Phenomenons (전자계통 현상 시각화 MMI 개발에 관한 연구)

  • Lee, Wook-Hwa;Park, In-Kun;Kim, Wook;Lee, Jin;Choe, Jong-Woong;Yoon, Y.B.;Jang, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.175-177
    • /
    • 1999
  • This paper presents a prototype of visualization MMI of the Power System Phenomenon, specially synchronous machine dynamics and frequency deviations of power system for KEPCO's Enhanced Power System Simulator(KEPS)[1]. And some visualization designs of the Power System Phenomenons such as voltage stability, transient stability, SSR, Line overflow, and voltage deviations are presented. The prototype MMI has included the animations & 3D graphics presentations for synchronous machine rotor deviations and frequency deviations. So, a user can intuitively acquire the basic concepts of the power system oscillations. Finally, it will be scheduled to development of the various visualization MMI of the power system phenomenons for development and installation of KEPS.

  • PDF